File: | build/gcc/fortran/simplify.c |
Warning: | line 2519, column 3 Value stored to 's_len' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* Simplify intrinsic functions at compile-time. |
2 | Copyright (C) 2000-2021 Free Software Foundation, Inc. |
3 | Contributed by Andy Vaught & Katherine Holcomb |
4 | |
5 | This file is part of GCC. |
6 | |
7 | GCC is free software; you can redistribute it and/or modify it under |
8 | the terms of the GNU General Public License as published by the Free |
9 | Software Foundation; either version 3, or (at your option) any later |
10 | version. |
11 | |
12 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
13 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
14 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
15 | for more details. |
16 | |
17 | You should have received a copy of the GNU General Public License |
18 | along with GCC; see the file COPYING3. If not see |
19 | <http://www.gnu.org/licenses/>. */ |
20 | |
21 | #include "config.h" |
22 | #include "system.h" |
23 | #include "coretypes.h" |
24 | #include "tm.h" /* For BITS_PER_UNIT. */ |
25 | #include "gfortran.h" |
26 | #include "arith.h" |
27 | #include "intrinsic.h" |
28 | #include "match.h" |
29 | #include "target-memory.h" |
30 | #include "constructor.h" |
31 | #include "version.h" /* For version_string. */ |
32 | |
33 | /* Prototypes. */ |
34 | |
35 | static int min_max_choose (gfc_expr *, gfc_expr *, int, bool back_val = false); |
36 | |
37 | gfc_expr gfc_bad_expr; |
38 | |
39 | static gfc_expr *simplify_size (gfc_expr *, gfc_expr *, int); |
40 | |
41 | |
42 | /* Note that 'simplification' is not just transforming expressions. |
43 | For functions that are not simplified at compile time, range |
44 | checking is done if possible. |
45 | |
46 | The return convention is that each simplification function returns: |
47 | |
48 | A new expression node corresponding to the simplified arguments. |
49 | The original arguments are destroyed by the caller, and must not |
50 | be a part of the new expression. |
51 | |
52 | NULL pointer indicating that no simplification was possible and |
53 | the original expression should remain intact. |
54 | |
55 | An expression pointer to gfc_bad_expr (a static placeholder) |
56 | indicating that some error has prevented simplification. The |
57 | error is generated within the function and should be propagated |
58 | upwards |
59 | |
60 | By the time a simplification function gets control, it has been |
61 | decided that the function call is really supposed to be the |
62 | intrinsic. No type checking is strictly necessary, since only |
63 | valid types will be passed on. On the other hand, a simplification |
64 | subroutine may have to look at the type of an argument as part of |
65 | its processing. |
66 | |
67 | Array arguments are only passed to these subroutines that implement |
68 | the simplification of transformational intrinsics. |
69 | |
70 | The functions in this file don't have much comment with them, but |
71 | everything is reasonably straight-forward. The Standard, chapter 13 |
72 | is the best comment you'll find for this file anyway. */ |
73 | |
74 | /* Range checks an expression node. If all goes well, returns the |
75 | node, otherwise returns &gfc_bad_expr and frees the node. */ |
76 | |
77 | static gfc_expr * |
78 | range_check (gfc_expr *result, const char *name) |
79 | { |
80 | if (result == NULL__null) |
81 | return &gfc_bad_expr; |
82 | |
83 | if (result->expr_type != EXPR_CONSTANT) |
84 | return result; |
85 | |
86 | switch (gfc_range_check (result)) |
87 | { |
88 | case ARITH_OK: |
89 | return result; |
90 | |
91 | case ARITH_OVERFLOW: |
92 | gfc_error ("Result of %s overflows its kind at %L", name, |
93 | &result->where); |
94 | break; |
95 | |
96 | case ARITH_UNDERFLOW: |
97 | gfc_error ("Result of %s underflows its kind at %L", name, |
98 | &result->where); |
99 | break; |
100 | |
101 | case ARITH_NAN: |
102 | gfc_error ("Result of %s is NaN at %L", name, &result->where); |
103 | break; |
104 | |
105 | default: |
106 | gfc_error ("Result of %s gives range error for its kind at %L", name, |
107 | &result->where); |
108 | break; |
109 | } |
110 | |
111 | gfc_free_expr (result); |
112 | return &gfc_bad_expr; |
113 | } |
114 | |
115 | |
116 | /* A helper function that gets an optional and possibly missing |
117 | kind parameter. Returns the kind, -1 if something went wrong. */ |
118 | |
119 | static int |
120 | get_kind (bt type, gfc_expr *k, const char *name, int default_kind) |
121 | { |
122 | int kind; |
123 | |
124 | if (k == NULL__null) |
125 | return default_kind; |
126 | |
127 | if (k->expr_type != EXPR_CONSTANT) |
128 | { |
129 | gfc_error ("KIND parameter of %s at %L must be an initialization " |
130 | "expression", name, &k->where); |
131 | return -1; |
132 | } |
133 | |
134 | if (gfc_extract_int (k, &kind) |
135 | || gfc_validate_kind (type, kind, true) < 0) |
136 | { |
137 | gfc_error ("Invalid KIND parameter of %s at %L", name, &k->where); |
138 | return -1; |
139 | } |
140 | |
141 | return kind; |
142 | } |
143 | |
144 | |
145 | /* Converts an mpz_t signed variable into an unsigned one, assuming |
146 | two's complement representations and a binary width of bitsize. |
147 | The conversion is a no-op unless x is negative; otherwise, it can |
148 | be accomplished by masking out the high bits. */ |
149 | |
150 | static void |
151 | convert_mpz_to_unsigned (mpz_t x, int bitsize) |
152 | { |
153 | mpz_t mask; |
154 | |
155 | if (mpz_sgn (x)((x)->_mp_size < 0 ? -1 : (x)->_mp_size > 0) < 0) |
156 | { |
157 | /* Confirm that no bits above the signed range are unset if we |
158 | are doing range checking. */ |
159 | if (flag_range_checkglobal_options.x_flag_range_check != 0) |
160 | gcc_assert (mpz_scan0 (x, bitsize-1) == ULONG_MAX)((void)(!(__gmpz_scan0 (x, bitsize-1) == (9223372036854775807L *2UL+1UL)) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 160, __FUNCTION__), 0 : 0)); |
161 | |
162 | mpz_init_set_ui__gmpz_init_set_ui (mask, 1); |
163 | mpz_mul_2exp__gmpz_mul_2exp (mask, mask, bitsize); |
164 | mpz_sub_ui__gmpz_sub_ui (mask, mask, 1); |
165 | |
166 | mpz_and__gmpz_and (x, x, mask); |
167 | |
168 | mpz_clear__gmpz_clear (mask); |
169 | } |
170 | else |
171 | { |
172 | /* Confirm that no bits above the signed range are set if we |
173 | are doing range checking. */ |
174 | if (flag_range_checkglobal_options.x_flag_range_check != 0) |
175 | gcc_assert (mpz_scan1 (x, bitsize-1) == ULONG_MAX)((void)(!(__gmpz_scan1 (x, bitsize-1) == (9223372036854775807L *2UL+1UL)) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 175, __FUNCTION__), 0 : 0)); |
176 | } |
177 | } |
178 | |
179 | |
180 | /* Converts an mpz_t unsigned variable into a signed one, assuming |
181 | two's complement representations and a binary width of bitsize. |
182 | If the bitsize-1 bit is set, this is taken as a sign bit and |
183 | the number is converted to the corresponding negative number. */ |
184 | |
185 | void |
186 | gfc_convert_mpz_to_signed (mpz_t x, int bitsize) |
187 | { |
188 | mpz_t mask; |
189 | |
190 | /* Confirm that no bits above the unsigned range are set if we are |
191 | doing range checking. */ |
192 | if (flag_range_checkglobal_options.x_flag_range_check != 0) |
193 | gcc_assert (mpz_scan1 (x, bitsize) == ULONG_MAX)((void)(!(__gmpz_scan1 (x, bitsize) == (9223372036854775807L * 2UL+1UL)) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 193, __FUNCTION__), 0 : 0)); |
194 | |
195 | if (mpz_tstbit__gmpz_tstbit (x, bitsize - 1) == 1) |
196 | { |
197 | mpz_init_set_ui__gmpz_init_set_ui (mask, 1); |
198 | mpz_mul_2exp__gmpz_mul_2exp (mask, mask, bitsize); |
199 | mpz_sub_ui__gmpz_sub_ui (mask, mask, 1); |
200 | |
201 | /* We negate the number by hand, zeroing the high bits, that is |
202 | make it the corresponding positive number, and then have it |
203 | negated by GMP, giving the correct representation of the |
204 | negative number. */ |
205 | mpz_com__gmpz_com (x, x); |
206 | mpz_add_ui__gmpz_add_ui (x, x, 1); |
207 | mpz_and__gmpz_and (x, x, mask); |
208 | |
209 | mpz_neg__gmpz_neg (x, x); |
210 | |
211 | mpz_clear__gmpz_clear (mask); |
212 | } |
213 | } |
214 | |
215 | |
216 | /* Test that the expression is a constant array, simplifying if |
217 | we are dealing with a parameter array. */ |
218 | |
219 | static bool |
220 | is_constant_array_expr (gfc_expr *e) |
221 | { |
222 | gfc_constructor *c; |
223 | bool array_OK = true; |
224 | mpz_t size; |
225 | |
226 | if (e == NULL__null) |
227 | return true; |
228 | |
229 | if (e->expr_type == EXPR_VARIABLE && e->rank > 0 |
230 | && e->symtree->n.sym->attr.flavor == FL_PARAMETER) |
231 | gfc_simplify_expr (e, 1); |
232 | |
233 | if (e->expr_type != EXPR_ARRAY || !gfc_is_constant_expr (e)) |
234 | return false; |
235 | |
236 | for (c = gfc_constructor_first (e->value.constructor); |
237 | c; c = gfc_constructor_next (c)) |
238 | if (c->expr->expr_type != EXPR_CONSTANT |
239 | && c->expr->expr_type != EXPR_STRUCTURE) |
240 | { |
241 | array_OK = false; |
242 | break; |
243 | } |
244 | |
245 | /* Check and expand the constructor. */ |
246 | if (!array_OK && gfc_init_expr_flag && e->rank == 1) |
247 | { |
248 | array_OK = gfc_reduce_init_expr (e); |
249 | /* gfc_reduce_init_expr resets the flag. */ |
250 | gfc_init_expr_flag = true; |
251 | } |
252 | else |
253 | return array_OK; |
254 | |
255 | /* Recheck to make sure that any EXPR_ARRAYs have gone. */ |
256 | for (c = gfc_constructor_first (e->value.constructor); |
257 | c; c = gfc_constructor_next (c)) |
258 | if (c->expr->expr_type != EXPR_CONSTANT |
259 | && c->expr->expr_type != EXPR_STRUCTURE) |
260 | return false; |
261 | |
262 | /* Make sure that the array has a valid shape. */ |
263 | if (e->shape == NULL__null && e->rank == 1) |
264 | { |
265 | if (!gfc_array_size(e, &size)) |
266 | return false; |
267 | e->shape = gfc_get_shape (1)(((mpz_t *) xcalloc (((1)), sizeof (mpz_t)))); |
268 | mpz_init_set__gmpz_init_set (e->shape[0], size); |
269 | mpz_clear__gmpz_clear (size); |
270 | } |
271 | |
272 | return array_OK; |
273 | } |
274 | |
275 | /* Test for a size zero array. */ |
276 | bool |
277 | gfc_is_size_zero_array (gfc_expr *array) |
278 | { |
279 | |
280 | if (array->rank == 0) |
281 | return false; |
282 | |
283 | if (array->expr_type == EXPR_VARIABLE && array->rank > 0 |
284 | && array->symtree->n.sym->attr.flavor == FL_PARAMETER |
285 | && array->shape != NULL__null) |
286 | { |
287 | for (int i = 0; i < array->rank; i++) |
288 | if (mpz_cmp_si (array->shape[i], 0)(__builtin_constant_p ((0) >= 0) && (0) >= 0 ? ( __builtin_constant_p ((static_cast<unsigned long> (0))) && ((static_cast<unsigned long> (0))) == 0 ? ( (array->shape[i])->_mp_size < 0 ? -1 : (array->shape [i])->_mp_size > 0) : __gmpz_cmp_ui (array->shape[i] ,(static_cast<unsigned long> (0)))) : __gmpz_cmp_si (array ->shape[i],0)) <= 0) |
289 | return true; |
290 | |
291 | return false; |
292 | } |
293 | |
294 | if (array->expr_type == EXPR_ARRAY) |
295 | return array->value.constructor == NULL__null; |
296 | |
297 | return false; |
298 | } |
299 | |
300 | |
301 | /* Initialize a transformational result expression with a given value. */ |
302 | |
303 | static void |
304 | init_result_expr (gfc_expr *e, int init, gfc_expr *array) |
305 | { |
306 | if (e && e->expr_type == EXPR_ARRAY) |
307 | { |
308 | gfc_constructor *ctor = gfc_constructor_first (e->value.constructor); |
309 | while (ctor) |
310 | { |
311 | init_result_expr (ctor->expr, init, array); |
312 | ctor = gfc_constructor_next (ctor); |
313 | } |
314 | } |
315 | else if (e && e->expr_type == EXPR_CONSTANT) |
316 | { |
317 | int i = gfc_validate_kind (e->ts.type, e->ts.kind, false); |
318 | HOST_WIDE_INTlong length; |
319 | gfc_char_t *string; |
320 | |
321 | switch (e->ts.type) |
322 | { |
323 | case BT_LOGICAL: |
324 | e->value.logical = (init ? 1 : 0); |
325 | break; |
326 | |
327 | case BT_INTEGER: |
328 | if (init == INT_MIN(-2147483647 -1)) |
329 | mpz_set__gmpz_set (e->value.integer, gfc_integer_kinds[i].min_int); |
330 | else if (init == INT_MAX2147483647) |
331 | mpz_set__gmpz_set (e->value.integer, gfc_integer_kinds[i].huge); |
332 | else |
333 | mpz_set_si__gmpz_set_si (e->value.integer, init); |
334 | break; |
335 | |
336 | case BT_REAL: |
337 | if (init == INT_MIN(-2147483647 -1)) |
338 | { |
339 | mpfr_set (e->value.real, gfc_real_kinds[i].huge, GFC_RND_MODE)mpfr_set4(e->value.real,gfc_real_kinds[i].huge,MPFR_RNDN,( (gfc_real_kinds[i].huge)->_mpfr_sign)); |
340 | mpfr_neg (e->value.real, e->value.real, GFC_RND_MODEMPFR_RNDN); |
341 | } |
342 | else if (init == INT_MAX2147483647) |
343 | mpfr_set (e->value.real, gfc_real_kinds[i].huge, GFC_RND_MODE)mpfr_set4(e->value.real,gfc_real_kinds[i].huge,MPFR_RNDN,( (gfc_real_kinds[i].huge)->_mpfr_sign)); |
344 | else |
345 | mpfr_set_si (e->value.real, init, GFC_RND_MODEMPFR_RNDN); |
346 | break; |
347 | |
348 | case BT_COMPLEX: |
349 | mpc_set_si (e->value.complex, init, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
350 | break; |
351 | |
352 | case BT_CHARACTER: |
353 | if (init == INT_MIN(-2147483647 -1)) |
354 | { |
355 | gfc_expr *len = gfc_simplify_len (array, NULL__null); |
356 | gfc_extract_hwi (len, &length); |
357 | string = gfc_get_wide_string (length + 1)((gfc_char_t *) xcalloc ((length + 1), sizeof (gfc_char_t))); |
358 | gfc_wide_memset (string, 0, length); |
359 | } |
360 | else if (init == INT_MAX2147483647) |
361 | { |
362 | gfc_expr *len = gfc_simplify_len (array, NULL__null); |
363 | gfc_extract_hwi (len, &length); |
364 | string = gfc_get_wide_string (length + 1)((gfc_char_t *) xcalloc ((length + 1), sizeof (gfc_char_t))); |
365 | gfc_wide_memset (string, 255, length); |
366 | } |
367 | else |
368 | { |
369 | length = 0; |
370 | string = gfc_get_wide_string (1)((gfc_char_t *) xcalloc ((1), sizeof (gfc_char_t))); |
371 | } |
372 | |
373 | string[length] = '\0'; |
374 | e->value.character.length = length; |
375 | e->value.character.string = string; |
376 | break; |
377 | |
378 | default: |
379 | gcc_unreachable()(fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 379, __FUNCTION__)); |
380 | } |
381 | } |
382 | else |
383 | gcc_unreachable()(fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 383, __FUNCTION__)); |
384 | } |
385 | |
386 | |
387 | /* Helper function for gfc_simplify_dot_product() and gfc_simplify_matmul; |
388 | if conj_a is true, the matrix_a is complex conjugated. */ |
389 | |
390 | static gfc_expr * |
391 | compute_dot_product (gfc_expr *matrix_a, int stride_a, int offset_a, |
392 | gfc_expr *matrix_b, int stride_b, int offset_b, |
393 | bool conj_a) |
394 | { |
395 | gfc_expr *result, *a, *b, *c; |
396 | |
397 | /* Set result to an INTEGER(1) 0 for numeric types and .false. for |
398 | LOGICAL. Mixed-mode math in the loop will promote result to the |
399 | correct type and kind. */ |
400 | if (matrix_a->ts.type == BT_LOGICAL) |
401 | result = gfc_get_logical_expr (gfc_default_logical_kind, NULL__null, false); |
402 | else |
403 | result = gfc_get_int_expr (1, NULL__null, 0); |
404 | result->where = matrix_a->where; |
405 | |
406 | a = gfc_constructor_lookup_expr (matrix_a->value.constructor, offset_a); |
407 | b = gfc_constructor_lookup_expr (matrix_b->value.constructor, offset_b); |
408 | while (a && b) |
409 | { |
410 | /* Copying of expressions is required as operands are free'd |
411 | by the gfc_arith routines. */ |
412 | switch (result->ts.type) |
413 | { |
414 | case BT_LOGICAL: |
415 | result = gfc_or (result, |
416 | gfc_and (gfc_copy_expr (a), |
417 | gfc_copy_expr (b))); |
418 | break; |
419 | |
420 | case BT_INTEGER: |
421 | case BT_REAL: |
422 | case BT_COMPLEX: |
423 | if (conj_a && a->ts.type == BT_COMPLEX) |
424 | c = gfc_simplify_conjg (a); |
425 | else |
426 | c = gfc_copy_expr (a); |
427 | result = gfc_add (result, gfc_multiply (c, gfc_copy_expr (b))); |
428 | break; |
429 | |
430 | default: |
431 | gcc_unreachable()(fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 431, __FUNCTION__)); |
432 | } |
433 | |
434 | offset_a += stride_a; |
435 | a = gfc_constructor_lookup_expr (matrix_a->value.constructor, offset_a); |
436 | |
437 | offset_b += stride_b; |
438 | b = gfc_constructor_lookup_expr (matrix_b->value.constructor, offset_b); |
439 | } |
440 | |
441 | return result; |
442 | } |
443 | |
444 | |
445 | /* Build a result expression for transformational intrinsics, |
446 | depending on DIM. */ |
447 | |
448 | static gfc_expr * |
449 | transformational_result (gfc_expr *array, gfc_expr *dim, bt type, |
450 | int kind, locus* where) |
451 | { |
452 | gfc_expr *result; |
453 | int i, nelem; |
454 | |
455 | if (!dim || array->rank == 1) |
456 | return gfc_get_constant_expr (type, kind, where); |
457 | |
458 | result = gfc_get_array_expr (type, kind, where); |
459 | result->shape = gfc_copy_shape_excluding (array->shape, array->rank, dim); |
460 | result->rank = array->rank - 1; |
461 | |
462 | /* gfc_array_size() would count the number of elements in the constructor, |
463 | we have not built those yet. */ |
464 | nelem = 1; |
465 | for (i = 0; i < result->rank; ++i) |
466 | nelem *= mpz_get_ui__gmpz_get_ui (result->shape[i]); |
467 | |
468 | for (i = 0; i < nelem; ++i) |
469 | { |
470 | gfc_constructor_append_expr (&result->value.constructor, |
471 | gfc_get_constant_expr (type, kind, where), |
472 | NULL__null); |
473 | } |
474 | |
475 | return result; |
476 | } |
477 | |
478 | |
479 | typedef gfc_expr* (*transformational_op)(gfc_expr*, gfc_expr*); |
480 | |
481 | /* Wrapper function, implements 'op1 += 1'. Only called if MASK |
482 | of COUNT intrinsic is .TRUE.. |
483 | |
484 | Interface and implementation mimics arith functions as |
485 | gfc_add, gfc_multiply, etc. */ |
486 | |
487 | static gfc_expr * |
488 | gfc_count (gfc_expr *op1, gfc_expr *op2) |
489 | { |
490 | gfc_expr *result; |
491 | |
492 | gcc_assert (op1->ts.type == BT_INTEGER)((void)(!(op1->ts.type == BT_INTEGER) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 492, __FUNCTION__), 0 : 0)); |
493 | gcc_assert (op2->ts.type == BT_LOGICAL)((void)(!(op2->ts.type == BT_LOGICAL) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 493, __FUNCTION__), 0 : 0)); |
494 | gcc_assert (op2->value.logical)((void)(!(op2->value.logical) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 494, __FUNCTION__), 0 : 0)); |
495 | |
496 | result = gfc_copy_expr (op1); |
497 | mpz_add_ui__gmpz_add_ui (result->value.integer, result->value.integer, 1); |
498 | |
499 | gfc_free_expr (op1); |
500 | gfc_free_expr (op2); |
501 | return result; |
502 | } |
503 | |
504 | |
505 | /* Transforms an ARRAY with operation OP, according to MASK, to a |
506 | scalar RESULT. E.g. called if |
507 | |
508 | REAL, PARAMETER :: array(n, m) = ... |
509 | REAL, PARAMETER :: s = SUM(array) |
510 | |
511 | where OP == gfc_add(). */ |
512 | |
513 | static gfc_expr * |
514 | simplify_transformation_to_scalar (gfc_expr *result, gfc_expr *array, gfc_expr *mask, |
515 | transformational_op op) |
516 | { |
517 | gfc_expr *a, *m; |
518 | gfc_constructor *array_ctor, *mask_ctor; |
519 | |
520 | /* Shortcut for constant .FALSE. MASK. */ |
521 | if (mask |
522 | && mask->expr_type == EXPR_CONSTANT |
523 | && !mask->value.logical) |
524 | return result; |
525 | |
526 | array_ctor = gfc_constructor_first (array->value.constructor); |
527 | mask_ctor = NULL__null; |
528 | if (mask && mask->expr_type == EXPR_ARRAY) |
529 | mask_ctor = gfc_constructor_first (mask->value.constructor); |
530 | |
531 | while (array_ctor) |
532 | { |
533 | a = array_ctor->expr; |
534 | array_ctor = gfc_constructor_next (array_ctor); |
535 | |
536 | /* A constant MASK equals .TRUE. here and can be ignored. */ |
537 | if (mask_ctor) |
538 | { |
539 | m = mask_ctor->expr; |
540 | mask_ctor = gfc_constructor_next (mask_ctor); |
541 | if (!m->value.logical) |
542 | continue; |
543 | } |
544 | |
545 | result = op (result, gfc_copy_expr (a)); |
546 | if (!result) |
547 | return result; |
548 | } |
549 | |
550 | return result; |
551 | } |
552 | |
553 | /* Transforms an ARRAY with operation OP, according to MASK, to an |
554 | array RESULT. E.g. called if |
555 | |
556 | REAL, PARAMETER :: array(n, m) = ... |
557 | REAL, PARAMETER :: s(n) = PROD(array, DIM=1) |
558 | |
559 | where OP == gfc_multiply(). |
560 | The result might be post processed using post_op. */ |
561 | |
562 | static gfc_expr * |
563 | simplify_transformation_to_array (gfc_expr *result, gfc_expr *array, gfc_expr *dim, |
564 | gfc_expr *mask, transformational_op op, |
565 | transformational_op post_op) |
566 | { |
567 | mpz_t size; |
568 | int done, i, n, arraysize, resultsize, dim_index, dim_extent, dim_stride; |
569 | gfc_expr **arrayvec, **resultvec, **base, **src, **dest; |
570 | gfc_constructor *array_ctor, *mask_ctor, *result_ctor; |
571 | |
572 | int count[GFC_MAX_DIMENSIONS15], extent[GFC_MAX_DIMENSIONS15], |
573 | sstride[GFC_MAX_DIMENSIONS15], dstride[GFC_MAX_DIMENSIONS15], |
574 | tmpstride[GFC_MAX_DIMENSIONS15]; |
575 | |
576 | /* Shortcut for constant .FALSE. MASK. */ |
577 | if (mask |
578 | && mask->expr_type == EXPR_CONSTANT |
579 | && !mask->value.logical) |
580 | return result; |
581 | |
582 | /* Build an indexed table for array element expressions to minimize |
583 | linked-list traversal. Masked elements are set to NULL. */ |
584 | gfc_array_size (array, &size); |
585 | arraysize = mpz_get_ui__gmpz_get_ui (size); |
586 | mpz_clear__gmpz_clear (size); |
587 | |
588 | arrayvec = XCNEWVEC (gfc_expr*, arraysize)((gfc_expr* *) xcalloc ((arraysize), sizeof (gfc_expr*))); |
589 | |
590 | array_ctor = gfc_constructor_first (array->value.constructor); |
591 | mask_ctor = NULL__null; |
592 | if (mask && mask->expr_type == EXPR_ARRAY) |
593 | mask_ctor = gfc_constructor_first (mask->value.constructor); |
594 | |
595 | for (i = 0; i < arraysize; ++i) |
596 | { |
597 | arrayvec[i] = array_ctor->expr; |
598 | array_ctor = gfc_constructor_next (array_ctor); |
599 | |
600 | if (mask_ctor) |
601 | { |
602 | if (!mask_ctor->expr->value.logical) |
603 | arrayvec[i] = NULL__null; |
604 | |
605 | mask_ctor = gfc_constructor_next (mask_ctor); |
606 | } |
607 | } |
608 | |
609 | /* Same for the result expression. */ |
610 | gfc_array_size (result, &size); |
611 | resultsize = mpz_get_ui__gmpz_get_ui (size); |
612 | mpz_clear__gmpz_clear (size); |
613 | |
614 | resultvec = XCNEWVEC (gfc_expr*, resultsize)((gfc_expr* *) xcalloc ((resultsize), sizeof (gfc_expr*))); |
615 | result_ctor = gfc_constructor_first (result->value.constructor); |
616 | for (i = 0; i < resultsize; ++i) |
617 | { |
618 | resultvec[i] = result_ctor->expr; |
619 | result_ctor = gfc_constructor_next (result_ctor); |
620 | } |
621 | |
622 | gfc_extract_int (dim, &dim_index); |
623 | dim_index -= 1; /* zero-base index */ |
624 | dim_extent = 0; |
625 | dim_stride = 0; |
626 | |
627 | for (i = 0, n = 0; i < array->rank; ++i) |
628 | { |
629 | count[i] = 0; |
630 | tmpstride[i] = (i == 0) ? 1 : tmpstride[i-1] * mpz_get_si__gmpz_get_si (array->shape[i-1]); |
631 | if (i == dim_index) |
632 | { |
633 | dim_extent = mpz_get_si__gmpz_get_si (array->shape[i]); |
634 | dim_stride = tmpstride[i]; |
635 | continue; |
636 | } |
637 | |
638 | extent[n] = mpz_get_si__gmpz_get_si (array->shape[i]); |
639 | sstride[n] = tmpstride[i]; |
640 | dstride[n] = (n == 0) ? 1 : dstride[n-1] * extent[n-1]; |
641 | n += 1; |
642 | } |
643 | |
644 | done = resultsize <= 0; |
645 | base = arrayvec; |
646 | dest = resultvec; |
647 | while (!done) |
648 | { |
649 | for (src = base, n = 0; n < dim_extent; src += dim_stride, ++n) |
650 | if (*src) |
651 | *dest = op (*dest, gfc_copy_expr (*src)); |
652 | |
653 | if (post_op) |
654 | *dest = post_op (*dest, *dest); |
655 | |
656 | count[0]++; |
657 | base += sstride[0]; |
658 | dest += dstride[0]; |
659 | |
660 | n = 0; |
661 | while (!done && count[n] == extent[n]) |
662 | { |
663 | count[n] = 0; |
664 | base -= sstride[n] * extent[n]; |
665 | dest -= dstride[n] * extent[n]; |
666 | |
667 | n++; |
668 | if (n < result->rank) |
669 | { |
670 | /* If the nested loop is unrolled GFC_MAX_DIMENSIONS |
671 | times, we'd warn for the last iteration, because the |
672 | array index will have already been incremented to the |
673 | array sizes, and we can't tell that this must make |
674 | the test against result->rank false, because ranks |
675 | must not exceed GFC_MAX_DIMENSIONS. */ |
676 | GCC_DIAGNOSTIC_PUSH_IGNORED (-Warray-bounds) |
677 | count[n]++; |
678 | base += sstride[n]; |
679 | dest += dstride[n]; |
680 | GCC_DIAGNOSTIC_POP |
681 | } |
682 | else |
683 | done = true; |
684 | } |
685 | } |
686 | |
687 | /* Place updated expression in result constructor. */ |
688 | result_ctor = gfc_constructor_first (result->value.constructor); |
689 | for (i = 0; i < resultsize; ++i) |
690 | { |
691 | result_ctor->expr = resultvec[i]; |
692 | result_ctor = gfc_constructor_next (result_ctor); |
693 | } |
694 | |
695 | free (arrayvec); |
696 | free (resultvec); |
697 | return result; |
698 | } |
699 | |
700 | |
701 | static gfc_expr * |
702 | simplify_transformation (gfc_expr *array, gfc_expr *dim, gfc_expr *mask, |
703 | int init_val, transformational_op op) |
704 | { |
705 | gfc_expr *result; |
706 | bool size_zero; |
707 | |
708 | size_zero = gfc_is_size_zero_array (array); |
709 | |
710 | if (!(is_constant_array_expr (array) || size_zero) |
711 | || !gfc_is_constant_expr (dim)) |
712 | return NULL__null; |
713 | |
714 | if (mask |
715 | && !is_constant_array_expr (mask) |
716 | && mask->expr_type != EXPR_CONSTANT) |
717 | return NULL__null; |
718 | |
719 | result = transformational_result (array, dim, array->ts.type, |
720 | array->ts.kind, &array->where); |
721 | init_result_expr (result, init_val, array); |
722 | |
723 | if (size_zero) |
724 | return result; |
725 | |
726 | return !dim || array->rank == 1 ? |
727 | simplify_transformation_to_scalar (result, array, mask, op) : |
728 | simplify_transformation_to_array (result, array, dim, mask, op, NULL__null); |
729 | } |
730 | |
731 | |
732 | /********************** Simplification functions *****************************/ |
733 | |
734 | gfc_expr * |
735 | gfc_simplify_abs (gfc_expr *e) |
736 | { |
737 | gfc_expr *result; |
738 | |
739 | if (e->expr_type != EXPR_CONSTANT) |
740 | return NULL__null; |
741 | |
742 | switch (e->ts.type) |
743 | { |
744 | case BT_INTEGER: |
745 | result = gfc_get_constant_expr (BT_INTEGER, e->ts.kind, &e->where); |
746 | mpz_abs__gmpz_abs (result->value.integer, e->value.integer); |
747 | return range_check (result, "IABS"); |
748 | |
749 | case BT_REAL: |
750 | result = gfc_get_constant_expr (BT_REAL, e->ts.kind, &e->where); |
751 | mpfr_abs (result->value.real, e->value.real, GFC_RND_MODE)mpfr_set4(result->value.real,e->value.real,MPFR_RNDN,1); |
752 | return range_check (result, "ABS"); |
753 | |
754 | case BT_COMPLEX: |
755 | gfc_set_model_kind (e->ts.kind); |
756 | result = gfc_get_constant_expr (BT_REAL, e->ts.kind, &e->where); |
757 | mpc_abs (result->value.real, e->value.complex, GFC_RND_MODEMPFR_RNDN); |
758 | return range_check (result, "CABS"); |
759 | |
760 | default: |
761 | gfc_internal_error ("gfc_simplify_abs(): Bad type"); |
762 | } |
763 | } |
764 | |
765 | |
766 | static gfc_expr * |
767 | simplify_achar_char (gfc_expr *e, gfc_expr *k, const char *name, bool ascii) |
768 | { |
769 | gfc_expr *result; |
770 | int kind; |
771 | bool too_large = false; |
772 | |
773 | if (e->expr_type != EXPR_CONSTANT) |
774 | return NULL__null; |
775 | |
776 | kind = get_kind (BT_CHARACTER, k, name, gfc_default_character_kind); |
777 | if (kind == -1) |
778 | return &gfc_bad_expr; |
779 | |
780 | if (mpz_cmp_si (e->value.integer, 0)(__builtin_constant_p ((0) >= 0) && (0) >= 0 ? ( __builtin_constant_p ((static_cast<unsigned long> (0))) && ((static_cast<unsigned long> (0))) == 0 ? ( (e->value.integer)->_mp_size < 0 ? -1 : (e->value .integer)->_mp_size > 0) : __gmpz_cmp_ui (e->value.integer ,(static_cast<unsigned long> (0)))) : __gmpz_cmp_si (e-> value.integer,0)) < 0) |
781 | { |
782 | gfc_error ("Argument of %s function at %L is negative", name, |
783 | &e->where); |
784 | return &gfc_bad_expr; |
785 | } |
786 | |
787 | if (ascii && warn_surprisingglobal_options.x_warn_surprising && mpz_cmp_si (e->value.integer, 127)(__builtin_constant_p ((127) >= 0) && (127) >= 0 ? (__builtin_constant_p ((static_cast<unsigned long> ( 127))) && ((static_cast<unsigned long> (127))) == 0 ? ((e->value.integer)->_mp_size < 0 ? -1 : (e-> value.integer)->_mp_size > 0) : __gmpz_cmp_ui (e->value .integer,(static_cast<unsigned long> (127)))) : __gmpz_cmp_si (e->value.integer,127)) > 0) |
788 | gfc_warning (OPT_Wsurprising, |
789 | "Argument of %s function at %L outside of range [0,127]", |
790 | name, &e->where); |
791 | |
792 | if (kind == 1 && mpz_cmp_si (e->value.integer, 255)(__builtin_constant_p ((255) >= 0) && (255) >= 0 ? (__builtin_constant_p ((static_cast<unsigned long> ( 255))) && ((static_cast<unsigned long> (255))) == 0 ? ((e->value.integer)->_mp_size < 0 ? -1 : (e-> value.integer)->_mp_size > 0) : __gmpz_cmp_ui (e->value .integer,(static_cast<unsigned long> (255)))) : __gmpz_cmp_si (e->value.integer,255)) > 0) |
793 | too_large = true; |
794 | else if (kind == 4) |
795 | { |
796 | mpz_t t; |
797 | mpz_init_set_ui__gmpz_init_set_ui (t, 2); |
798 | mpz_pow_ui__gmpz_pow_ui (t, t, 32); |
799 | mpz_sub_ui__gmpz_sub_ui (t, t, 1); |
800 | if (mpz_cmp__gmpz_cmp (e->value.integer, t) > 0) |
801 | too_large = true; |
802 | mpz_clear__gmpz_clear (t); |
803 | } |
804 | |
805 | if (too_large) |
806 | { |
807 | gfc_error ("Argument of %s function at %L is too large for the " |
808 | "collating sequence of kind %d", name, &e->where, kind); |
809 | return &gfc_bad_expr; |
810 | } |
811 | |
812 | result = gfc_get_character_expr (kind, &e->where, NULL__null, 1); |
813 | result->value.character.string[0] = mpz_get_ui__gmpz_get_ui (e->value.integer); |
814 | |
815 | return result; |
816 | } |
817 | |
818 | |
819 | |
820 | /* We use the processor's collating sequence, because all |
821 | systems that gfortran currently works on are ASCII. */ |
822 | |
823 | gfc_expr * |
824 | gfc_simplify_achar (gfc_expr *e, gfc_expr *k) |
825 | { |
826 | return simplify_achar_char (e, k, "ACHAR", true); |
827 | } |
828 | |
829 | |
830 | gfc_expr * |
831 | gfc_simplify_acos (gfc_expr *x) |
832 | { |
833 | gfc_expr *result; |
834 | |
835 | if (x->expr_type != EXPR_CONSTANT) |
836 | return NULL__null; |
837 | |
838 | switch (x->ts.type) |
839 | { |
840 | case BT_REAL: |
841 | if (mpfr_cmp_si (x->value.real, 1)mpfr_cmp_si_2exp((x->value.real),(1),0) > 0 |
842 | || mpfr_cmp_si (x->value.real, -1)mpfr_cmp_si_2exp((x->value.real),(-1),0) < 0) |
843 | { |
844 | gfc_error ("Argument of ACOS at %L must be between -1 and 1", |
845 | &x->where); |
846 | return &gfc_bad_expr; |
847 | } |
848 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
849 | mpfr_acos (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
850 | break; |
851 | |
852 | case BT_COMPLEX: |
853 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
854 | mpc_acos (result->value.complex, x->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
855 | break; |
856 | |
857 | default: |
858 | gfc_internal_error ("in gfc_simplify_acos(): Bad type"); |
859 | } |
860 | |
861 | return range_check (result, "ACOS"); |
862 | } |
863 | |
864 | gfc_expr * |
865 | gfc_simplify_acosh (gfc_expr *x) |
866 | { |
867 | gfc_expr *result; |
868 | |
869 | if (x->expr_type != EXPR_CONSTANT) |
870 | return NULL__null; |
871 | |
872 | switch (x->ts.type) |
873 | { |
874 | case BT_REAL: |
875 | if (mpfr_cmp_si (x->value.real, 1)mpfr_cmp_si_2exp((x->value.real),(1),0) < 0) |
876 | { |
877 | gfc_error ("Argument of ACOSH at %L must not be less than 1", |
878 | &x->where); |
879 | return &gfc_bad_expr; |
880 | } |
881 | |
882 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
883 | mpfr_acosh (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
884 | break; |
885 | |
886 | case BT_COMPLEX: |
887 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
888 | mpc_acosh (result->value.complex, x->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
889 | break; |
890 | |
891 | default: |
892 | gfc_internal_error ("in gfc_simplify_acosh(): Bad type"); |
893 | } |
894 | |
895 | return range_check (result, "ACOSH"); |
896 | } |
897 | |
898 | gfc_expr * |
899 | gfc_simplify_adjustl (gfc_expr *e) |
900 | { |
901 | gfc_expr *result; |
902 | int count, i, len; |
903 | gfc_char_t ch; |
904 | |
905 | if (e->expr_type != EXPR_CONSTANT) |
906 | return NULL__null; |
907 | |
908 | len = e->value.character.length; |
909 | |
910 | for (count = 0, i = 0; i < len; ++i) |
911 | { |
912 | ch = e->value.character.string[i]; |
913 | if (ch != ' ') |
914 | break; |
915 | ++count; |
916 | } |
917 | |
918 | result = gfc_get_character_expr (e->ts.kind, &e->where, NULL__null, len); |
919 | for (i = 0; i < len - count; ++i) |
920 | result->value.character.string[i] = e->value.character.string[count + i]; |
921 | |
922 | return result; |
923 | } |
924 | |
925 | |
926 | gfc_expr * |
927 | gfc_simplify_adjustr (gfc_expr *e) |
928 | { |
929 | gfc_expr *result; |
930 | int count, i, len; |
931 | gfc_char_t ch; |
932 | |
933 | if (e->expr_type != EXPR_CONSTANT) |
934 | return NULL__null; |
935 | |
936 | len = e->value.character.length; |
937 | |
938 | for (count = 0, i = len - 1; i >= 0; --i) |
939 | { |
940 | ch = e->value.character.string[i]; |
941 | if (ch != ' ') |
942 | break; |
943 | ++count; |
944 | } |
945 | |
946 | result = gfc_get_character_expr (e->ts.kind, &e->where, NULL__null, len); |
947 | for (i = 0; i < count; ++i) |
948 | result->value.character.string[i] = ' '; |
949 | |
950 | for (i = count; i < len; ++i) |
951 | result->value.character.string[i] = e->value.character.string[i - count]; |
952 | |
953 | return result; |
954 | } |
955 | |
956 | |
957 | gfc_expr * |
958 | gfc_simplify_aimag (gfc_expr *e) |
959 | { |
960 | gfc_expr *result; |
961 | |
962 | if (e->expr_type != EXPR_CONSTANT) |
963 | return NULL__null; |
964 | |
965 | result = gfc_get_constant_expr (BT_REAL, e->ts.kind, &e->where); |
966 | mpfr_set (result->value.real, mpc_imagref (e->value.complex), GFC_RND_MODE)mpfr_set4(result->value.real,((e->value.complex)->im ),MPFR_RNDN,((((e->value.complex)->im))->_mpfr_sign) ); |
967 | |
968 | return range_check (result, "AIMAG"); |
969 | } |
970 | |
971 | |
972 | gfc_expr * |
973 | gfc_simplify_aint (gfc_expr *e, gfc_expr *k) |
974 | { |
975 | gfc_expr *rtrunc, *result; |
976 | int kind; |
977 | |
978 | kind = get_kind (BT_REAL, k, "AINT", e->ts.kind); |
979 | if (kind == -1) |
980 | return &gfc_bad_expr; |
981 | |
982 | if (e->expr_type != EXPR_CONSTANT) |
983 | return NULL__null; |
984 | |
985 | rtrunc = gfc_copy_expr (e); |
986 | mpfr_trunc (rtrunc->value.real, e->value.real)mpfr_rint((rtrunc->value.real), (e->value.real), MPFR_RNDZ ); |
987 | |
988 | result = gfc_real2real (rtrunc, kind); |
989 | |
990 | gfc_free_expr (rtrunc); |
991 | |
992 | return range_check (result, "AINT"); |
993 | } |
994 | |
995 | |
996 | gfc_expr * |
997 | gfc_simplify_all (gfc_expr *mask, gfc_expr *dim) |
998 | { |
999 | return simplify_transformation (mask, dim, NULL__null, true, gfc_and); |
1000 | } |
1001 | |
1002 | |
1003 | gfc_expr * |
1004 | gfc_simplify_dint (gfc_expr *e) |
1005 | { |
1006 | gfc_expr *rtrunc, *result; |
1007 | |
1008 | if (e->expr_type != EXPR_CONSTANT) |
1009 | return NULL__null; |
1010 | |
1011 | rtrunc = gfc_copy_expr (e); |
1012 | mpfr_trunc (rtrunc->value.real, e->value.real)mpfr_rint((rtrunc->value.real), (e->value.real), MPFR_RNDZ ); |
1013 | |
1014 | result = gfc_real2real (rtrunc, gfc_default_double_kind); |
1015 | |
1016 | gfc_free_expr (rtrunc); |
1017 | |
1018 | return range_check (result, "DINT"); |
1019 | } |
1020 | |
1021 | |
1022 | gfc_expr * |
1023 | gfc_simplify_dreal (gfc_expr *e) |
1024 | { |
1025 | gfc_expr *result = NULL__null; |
1026 | |
1027 | if (e->expr_type != EXPR_CONSTANT) |
1028 | return NULL__null; |
1029 | |
1030 | result = gfc_get_constant_expr (BT_REAL, e->ts.kind, &e->where); |
1031 | mpc_real (result->value.real, e->value.complex, GFC_RND_MODEMPFR_RNDN); |
1032 | |
1033 | return range_check (result, "DREAL"); |
1034 | } |
1035 | |
1036 | |
1037 | gfc_expr * |
1038 | gfc_simplify_anint (gfc_expr *e, gfc_expr *k) |
1039 | { |
1040 | gfc_expr *result; |
1041 | int kind; |
1042 | |
1043 | kind = get_kind (BT_REAL, k, "ANINT", e->ts.kind); |
1044 | if (kind == -1) |
1045 | return &gfc_bad_expr; |
1046 | |
1047 | if (e->expr_type != EXPR_CONSTANT) |
1048 | return NULL__null; |
1049 | |
1050 | result = gfc_get_constant_expr (e->ts.type, kind, &e->where); |
1051 | mpfr_round (result->value.real, e->value.real)mpfr_rint((result->value.real), (e->value.real), MPFR_RNDNA ); |
1052 | |
1053 | return range_check (result, "ANINT"); |
1054 | } |
1055 | |
1056 | |
1057 | gfc_expr * |
1058 | gfc_simplify_and (gfc_expr *x, gfc_expr *y) |
1059 | { |
1060 | gfc_expr *result; |
1061 | int kind; |
1062 | |
1063 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) |
1064 | return NULL__null; |
1065 | |
1066 | kind = x->ts.kind > y->ts.kind ? x->ts.kind : y->ts.kind; |
1067 | |
1068 | switch (x->ts.type) |
1069 | { |
1070 | case BT_INTEGER: |
1071 | result = gfc_get_constant_expr (BT_INTEGER, kind, &x->where); |
1072 | mpz_and__gmpz_and (result->value.integer, x->value.integer, y->value.integer); |
1073 | return range_check (result, "AND"); |
1074 | |
1075 | case BT_LOGICAL: |
1076 | return gfc_get_logical_expr (kind, &x->where, |
1077 | x->value.logical && y->value.logical); |
1078 | |
1079 | default: |
1080 | gcc_unreachable ()(fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 1080, __FUNCTION__)); |
1081 | } |
1082 | } |
1083 | |
1084 | |
1085 | gfc_expr * |
1086 | gfc_simplify_any (gfc_expr *mask, gfc_expr *dim) |
1087 | { |
1088 | return simplify_transformation (mask, dim, NULL__null, false, gfc_or); |
1089 | } |
1090 | |
1091 | |
1092 | gfc_expr * |
1093 | gfc_simplify_dnint (gfc_expr *e) |
1094 | { |
1095 | gfc_expr *result; |
1096 | |
1097 | if (e->expr_type != EXPR_CONSTANT) |
1098 | return NULL__null; |
1099 | |
1100 | result = gfc_get_constant_expr (BT_REAL, gfc_default_double_kind, &e->where); |
1101 | mpfr_round (result->value.real, e->value.real)mpfr_rint((result->value.real), (e->value.real), MPFR_RNDNA ); |
1102 | |
1103 | return range_check (result, "DNINT"); |
1104 | } |
1105 | |
1106 | |
1107 | gfc_expr * |
1108 | gfc_simplify_asin (gfc_expr *x) |
1109 | { |
1110 | gfc_expr *result; |
1111 | |
1112 | if (x->expr_type != EXPR_CONSTANT) |
1113 | return NULL__null; |
1114 | |
1115 | switch (x->ts.type) |
1116 | { |
1117 | case BT_REAL: |
1118 | if (mpfr_cmp_si (x->value.real, 1)mpfr_cmp_si_2exp((x->value.real),(1),0) > 0 |
1119 | || mpfr_cmp_si (x->value.real, -1)mpfr_cmp_si_2exp((x->value.real),(-1),0) < 0) |
1120 | { |
1121 | gfc_error ("Argument of ASIN at %L must be between -1 and 1", |
1122 | &x->where); |
1123 | return &gfc_bad_expr; |
1124 | } |
1125 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1126 | mpfr_asin (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1127 | break; |
1128 | |
1129 | case BT_COMPLEX: |
1130 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1131 | mpc_asin (result->value.complex, x->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
1132 | break; |
1133 | |
1134 | default: |
1135 | gfc_internal_error ("in gfc_simplify_asin(): Bad type"); |
1136 | } |
1137 | |
1138 | return range_check (result, "ASIN"); |
1139 | } |
1140 | |
1141 | |
1142 | /* Convert radians to degrees, i.e., x * 180 / pi. */ |
1143 | |
1144 | static void |
1145 | rad2deg (mpfr_t x) |
1146 | { |
1147 | mpfr_t tmp; |
1148 | |
1149 | mpfr_init (tmp); |
1150 | mpfr_const_pi (tmp, GFC_RND_MODEMPFR_RNDN); |
1151 | mpfr_mul_ui (x, x, 180, GFC_RND_MODEMPFR_RNDN); |
1152 | mpfr_div (x, x, tmp, GFC_RND_MODEMPFR_RNDN); |
1153 | mpfr_clear (tmp); |
1154 | } |
1155 | |
1156 | |
1157 | /* Simplify ACOSD(X) where the returned value has units of degree. */ |
1158 | |
1159 | gfc_expr * |
1160 | gfc_simplify_acosd (gfc_expr *x) |
1161 | { |
1162 | gfc_expr *result; |
1163 | |
1164 | if (x->expr_type != EXPR_CONSTANT) |
1165 | return NULL__null; |
1166 | |
1167 | if (mpfr_cmp_si (x->value.real, 1)mpfr_cmp_si_2exp((x->value.real),(1),0) > 0 |
1168 | || mpfr_cmp_si (x->value.real, -1)mpfr_cmp_si_2exp((x->value.real),(-1),0) < 0) |
1169 | { |
1170 | gfc_error ("Argument of ACOSD at %L must be between -1 and 1", |
1171 | &x->where); |
1172 | return &gfc_bad_expr; |
1173 | } |
1174 | |
1175 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1176 | mpfr_acos (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1177 | rad2deg (result->value.real); |
1178 | |
1179 | return range_check (result, "ACOSD"); |
1180 | } |
1181 | |
1182 | |
1183 | /* Simplify asind (x) where the returned value has units of degree. */ |
1184 | |
1185 | gfc_expr * |
1186 | gfc_simplify_asind (gfc_expr *x) |
1187 | { |
1188 | gfc_expr *result; |
1189 | |
1190 | if (x->expr_type != EXPR_CONSTANT) |
1191 | return NULL__null; |
1192 | |
1193 | if (mpfr_cmp_si (x->value.real, 1)mpfr_cmp_si_2exp((x->value.real),(1),0) > 0 |
1194 | || mpfr_cmp_si (x->value.real, -1)mpfr_cmp_si_2exp((x->value.real),(-1),0) < 0) |
1195 | { |
1196 | gfc_error ("Argument of ASIND at %L must be between -1 and 1", |
1197 | &x->where); |
1198 | return &gfc_bad_expr; |
1199 | } |
1200 | |
1201 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1202 | mpfr_asin (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1203 | rad2deg (result->value.real); |
1204 | |
1205 | return range_check (result, "ASIND"); |
1206 | } |
1207 | |
1208 | |
1209 | /* Simplify atand (x) where the returned value has units of degree. */ |
1210 | |
1211 | gfc_expr * |
1212 | gfc_simplify_atand (gfc_expr *x) |
1213 | { |
1214 | gfc_expr *result; |
1215 | |
1216 | if (x->expr_type != EXPR_CONSTANT) |
1217 | return NULL__null; |
1218 | |
1219 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1220 | mpfr_atan (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1221 | rad2deg (result->value.real); |
1222 | |
1223 | return range_check (result, "ATAND"); |
1224 | } |
1225 | |
1226 | |
1227 | gfc_expr * |
1228 | gfc_simplify_asinh (gfc_expr *x) |
1229 | { |
1230 | gfc_expr *result; |
1231 | |
1232 | if (x->expr_type != EXPR_CONSTANT) |
1233 | return NULL__null; |
1234 | |
1235 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1236 | |
1237 | switch (x->ts.type) |
1238 | { |
1239 | case BT_REAL: |
1240 | mpfr_asinh (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1241 | break; |
1242 | |
1243 | case BT_COMPLEX: |
1244 | mpc_asinh (result->value.complex, x->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
1245 | break; |
1246 | |
1247 | default: |
1248 | gfc_internal_error ("in gfc_simplify_asinh(): Bad type"); |
1249 | } |
1250 | |
1251 | return range_check (result, "ASINH"); |
1252 | } |
1253 | |
1254 | |
1255 | gfc_expr * |
1256 | gfc_simplify_atan (gfc_expr *x) |
1257 | { |
1258 | gfc_expr *result; |
1259 | |
1260 | if (x->expr_type != EXPR_CONSTANT) |
1261 | return NULL__null; |
1262 | |
1263 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1264 | |
1265 | switch (x->ts.type) |
1266 | { |
1267 | case BT_REAL: |
1268 | mpfr_atan (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1269 | break; |
1270 | |
1271 | case BT_COMPLEX: |
1272 | mpc_atan (result->value.complex, x->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
1273 | break; |
1274 | |
1275 | default: |
1276 | gfc_internal_error ("in gfc_simplify_atan(): Bad type"); |
1277 | } |
1278 | |
1279 | return range_check (result, "ATAN"); |
1280 | } |
1281 | |
1282 | |
1283 | gfc_expr * |
1284 | gfc_simplify_atanh (gfc_expr *x) |
1285 | { |
1286 | gfc_expr *result; |
1287 | |
1288 | if (x->expr_type != EXPR_CONSTANT) |
1289 | return NULL__null; |
1290 | |
1291 | switch (x->ts.type) |
1292 | { |
1293 | case BT_REAL: |
1294 | if (mpfr_cmp_si (x->value.real, 1)mpfr_cmp_si_2exp((x->value.real),(1),0) >= 0 |
1295 | || mpfr_cmp_si (x->value.real, -1)mpfr_cmp_si_2exp((x->value.real),(-1),0) <= 0) |
1296 | { |
1297 | gfc_error ("Argument of ATANH at %L must be inside the range -1 " |
1298 | "to 1", &x->where); |
1299 | return &gfc_bad_expr; |
1300 | } |
1301 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1302 | mpfr_atanh (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1303 | break; |
1304 | |
1305 | case BT_COMPLEX: |
1306 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1307 | mpc_atanh (result->value.complex, x->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
1308 | break; |
1309 | |
1310 | default: |
1311 | gfc_internal_error ("in gfc_simplify_atanh(): Bad type"); |
1312 | } |
1313 | |
1314 | return range_check (result, "ATANH"); |
1315 | } |
1316 | |
1317 | |
1318 | gfc_expr * |
1319 | gfc_simplify_atan2 (gfc_expr *y, gfc_expr *x) |
1320 | { |
1321 | gfc_expr *result; |
1322 | |
1323 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) |
1324 | return NULL__null; |
1325 | |
1326 | if (mpfr_zero_p (y->value.real)((y->value.real)->_mpfr_exp == (0 - ((mpfr_exp_t) (((mpfr_uexp_t ) -1) >> 1)))) && mpfr_zero_p (x->value.real)((x->value.real)->_mpfr_exp == (0 - ((mpfr_exp_t) (((mpfr_uexp_t ) -1) >> 1))))) |
1327 | { |
1328 | gfc_error ("If first argument of ATAN2 at %L is zero, then the " |
1329 | "second argument must not be zero", &y->where); |
1330 | return &gfc_bad_expr; |
1331 | } |
1332 | |
1333 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1334 | mpfr_atan2 (result->value.real, y->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1335 | |
1336 | return range_check (result, "ATAN2"); |
1337 | } |
1338 | |
1339 | |
1340 | gfc_expr * |
1341 | gfc_simplify_bessel_j0 (gfc_expr *x) |
1342 | { |
1343 | gfc_expr *result; |
1344 | |
1345 | if (x->expr_type != EXPR_CONSTANT) |
1346 | return NULL__null; |
1347 | |
1348 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1349 | mpfr_j0 (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1350 | |
1351 | return range_check (result, "BESSEL_J0"); |
1352 | } |
1353 | |
1354 | |
1355 | gfc_expr * |
1356 | gfc_simplify_bessel_j1 (gfc_expr *x) |
1357 | { |
1358 | gfc_expr *result; |
1359 | |
1360 | if (x->expr_type != EXPR_CONSTANT) |
1361 | return NULL__null; |
1362 | |
1363 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1364 | mpfr_j1 (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1365 | |
1366 | return range_check (result, "BESSEL_J1"); |
1367 | } |
1368 | |
1369 | |
1370 | gfc_expr * |
1371 | gfc_simplify_bessel_jn (gfc_expr *order, gfc_expr *x) |
1372 | { |
1373 | gfc_expr *result; |
1374 | long n; |
1375 | |
1376 | if (x->expr_type != EXPR_CONSTANT || order->expr_type != EXPR_CONSTANT) |
1377 | return NULL__null; |
1378 | |
1379 | n = mpz_get_si__gmpz_get_si (order->value.integer); |
1380 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1381 | mpfr_jn (result->value.real, n, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1382 | |
1383 | return range_check (result, "BESSEL_JN"); |
1384 | } |
1385 | |
1386 | |
1387 | /* Simplify transformational form of JN and YN. */ |
1388 | |
1389 | static gfc_expr * |
1390 | gfc_simplify_bessel_n2 (gfc_expr *order1, gfc_expr *order2, gfc_expr *x, |
1391 | bool jn) |
1392 | { |
1393 | gfc_expr *result; |
1394 | gfc_expr *e; |
1395 | long n1, n2; |
1396 | int i; |
1397 | mpfr_t x2rev, last1, last2; |
1398 | |
1399 | if (x->expr_type != EXPR_CONSTANT || order1->expr_type != EXPR_CONSTANT |
1400 | || order2->expr_type != EXPR_CONSTANT) |
1401 | return NULL__null; |
1402 | |
1403 | n1 = mpz_get_si__gmpz_get_si (order1->value.integer); |
1404 | n2 = mpz_get_si__gmpz_get_si (order2->value.integer); |
1405 | result = gfc_get_array_expr (x->ts.type, x->ts.kind, &x->where); |
1406 | result->rank = 1; |
1407 | result->shape = gfc_get_shape (1)(((mpz_t *) xcalloc (((1)), sizeof (mpz_t)))); |
1408 | mpz_init_set_ui__gmpz_init_set_ui (result->shape[0], MAX (n2-n1+1, 0)((n2-n1+1) > (0) ? (n2-n1+1) : (0))); |
1409 | |
1410 | if (n2 < n1) |
1411 | return result; |
1412 | |
1413 | /* Special case: x == 0; it is J0(0.0) == 1, JN(N > 0, 0.0) == 0; and |
1414 | YN(N, 0.0) = -Inf. */ |
1415 | |
1416 | if (mpfr_cmp_ui (x->value.real, 0.0)mpfr_cmp_ui_2exp((x->value.real),(0.0),0) == 0) |
1417 | { |
1418 | if (!jn && flag_range_checkglobal_options.x_flag_range_check) |
1419 | { |
1420 | gfc_error ("Result of BESSEL_YN is -INF at %L", &result->where); |
1421 | gfc_free_expr (result); |
1422 | return &gfc_bad_expr; |
1423 | } |
1424 | |
1425 | if (jn && n1 == 0) |
1426 | { |
1427 | e = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1428 | mpfr_set_ui (e->value.real, 1, GFC_RND_MODEMPFR_RNDN); |
1429 | gfc_constructor_append_expr (&result->value.constructor, e, |
1430 | &x->where); |
1431 | n1++; |
1432 | } |
1433 | |
1434 | for (i = n1; i <= n2; i++) |
1435 | { |
1436 | e = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1437 | if (jn) |
1438 | mpfr_set_ui (e->value.real, 0, GFC_RND_MODEMPFR_RNDN); |
1439 | else |
1440 | mpfr_set_inf (e->value.real, -1); |
1441 | gfc_constructor_append_expr (&result->value.constructor, e, |
1442 | &x->where); |
1443 | } |
1444 | |
1445 | return result; |
1446 | } |
1447 | |
1448 | /* Use the faster but more verbose recurrence algorithm. Bessel functions |
1449 | are stable for downward recursion and Neumann functions are stable |
1450 | for upward recursion. It is |
1451 | x2rev = 2.0/x, |
1452 | J(N-1, x) = x2rev * N * J(N, x) - J(N+1, x), |
1453 | Y(N+1, x) = x2rev * N * Y(N, x) - Y(N-1, x). |
1454 | Cf. http://dlmf.nist.gov/10.74#iv and http://dlmf.nist.gov/10.6#E1 */ |
1455 | |
1456 | gfc_set_model_kind (x->ts.kind); |
1457 | |
1458 | /* Get first recursion anchor. */ |
1459 | |
1460 | mpfr_init (last1); |
1461 | if (jn) |
1462 | mpfr_jn (last1, n2, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1463 | else |
1464 | mpfr_yn (last1, n1, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1465 | |
1466 | e = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1467 | mpfr_set (e->value.real, last1, GFC_RND_MODE)mpfr_set4(e->value.real,last1,MPFR_RNDN,((last1)->_mpfr_sign )); |
1468 | if (range_check (e, jn ? "BESSEL_JN" : "BESSEL_YN") == &gfc_bad_expr) |
1469 | { |
1470 | mpfr_clear (last1); |
1471 | gfc_free_expr (e); |
1472 | gfc_free_expr (result); |
1473 | return &gfc_bad_expr; |
1474 | } |
1475 | gfc_constructor_append_expr (&result->value.constructor, e, &x->where); |
1476 | |
1477 | if (n1 == n2) |
1478 | { |
1479 | mpfr_clear (last1); |
1480 | return result; |
1481 | } |
1482 | |
1483 | /* Get second recursion anchor. */ |
1484 | |
1485 | mpfr_init (last2); |
1486 | if (jn) |
1487 | mpfr_jn (last2, n2-1, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1488 | else |
1489 | mpfr_yn (last2, n1+1, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1490 | |
1491 | e = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1492 | mpfr_set (e->value.real, last2, GFC_RND_MODE)mpfr_set4(e->value.real,last2,MPFR_RNDN,((last2)->_mpfr_sign )); |
1493 | if (range_check (e, jn ? "BESSEL_JN" : "BESSEL_YN") == &gfc_bad_expr) |
1494 | { |
1495 | mpfr_clear (last1); |
1496 | mpfr_clear (last2); |
1497 | gfc_free_expr (e); |
1498 | gfc_free_expr (result); |
1499 | return &gfc_bad_expr; |
1500 | } |
1501 | if (jn) |
1502 | gfc_constructor_insert_expr (&result->value.constructor, e, &x->where, -2); |
1503 | else |
1504 | gfc_constructor_append_expr (&result->value.constructor, e, &x->where); |
1505 | |
1506 | if (n1 + 1 == n2) |
1507 | { |
1508 | mpfr_clear (last1); |
1509 | mpfr_clear (last2); |
1510 | return result; |
1511 | } |
1512 | |
1513 | /* Start actual recursion. */ |
1514 | |
1515 | mpfr_init (x2rev); |
1516 | mpfr_ui_div (x2rev, 2, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1517 | |
1518 | for (i = 2; i <= n2-n1; i++) |
1519 | { |
1520 | e = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1521 | |
1522 | /* Special case: For YN, if the previous N gave -INF, set |
1523 | also N+1 to -INF. */ |
1524 | if (!jn && !flag_range_checkglobal_options.x_flag_range_check && mpfr_inf_p (last2)((last2)->_mpfr_exp == (2 - ((mpfr_exp_t) (((mpfr_uexp_t) - 1) >> 1))))) |
1525 | { |
1526 | mpfr_set_inf (e->value.real, -1); |
1527 | gfc_constructor_append_expr (&result->value.constructor, e, |
1528 | &x->where); |
1529 | continue; |
1530 | } |
1531 | |
1532 | mpfr_mul_si (e->value.real, x2rev, jn ? (n2-i+1) : (n1+i-1), |
1533 | GFC_RND_MODEMPFR_RNDN); |
1534 | mpfr_mul (e->value.real, e->value.real, last2, GFC_RND_MODEMPFR_RNDN); |
1535 | mpfr_sub (e->value.real, e->value.real, last1, GFC_RND_MODEMPFR_RNDN); |
1536 | |
1537 | if (range_check (e, jn ? "BESSEL_JN" : "BESSEL_YN") == &gfc_bad_expr) |
1538 | { |
1539 | /* Range_check frees "e" in that case. */ |
1540 | e = NULL__null; |
1541 | goto error; |
1542 | } |
1543 | |
1544 | if (jn) |
1545 | gfc_constructor_insert_expr (&result->value.constructor, e, &x->where, |
1546 | -i-1); |
1547 | else |
1548 | gfc_constructor_append_expr (&result->value.constructor, e, &x->where); |
1549 | |
1550 | mpfr_set (last1, last2, GFC_RND_MODE)mpfr_set4(last1,last2,MPFR_RNDN,((last2)->_mpfr_sign)); |
1551 | mpfr_set (last2, e->value.real, GFC_RND_MODE)mpfr_set4(last2,e->value.real,MPFR_RNDN,((e->value.real )->_mpfr_sign)); |
1552 | } |
1553 | |
1554 | mpfr_clear (last1); |
1555 | mpfr_clear (last2); |
1556 | mpfr_clear (x2rev); |
1557 | return result; |
1558 | |
1559 | error: |
1560 | mpfr_clear (last1); |
1561 | mpfr_clear (last2); |
1562 | mpfr_clear (x2rev); |
1563 | gfc_free_expr (e); |
1564 | gfc_free_expr (result); |
1565 | return &gfc_bad_expr; |
1566 | } |
1567 | |
1568 | |
1569 | gfc_expr * |
1570 | gfc_simplify_bessel_jn2 (gfc_expr *order1, gfc_expr *order2, gfc_expr *x) |
1571 | { |
1572 | return gfc_simplify_bessel_n2 (order1, order2, x, true); |
1573 | } |
1574 | |
1575 | |
1576 | gfc_expr * |
1577 | gfc_simplify_bessel_y0 (gfc_expr *x) |
1578 | { |
1579 | gfc_expr *result; |
1580 | |
1581 | if (x->expr_type != EXPR_CONSTANT) |
1582 | return NULL__null; |
1583 | |
1584 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1585 | mpfr_y0 (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1586 | |
1587 | return range_check (result, "BESSEL_Y0"); |
1588 | } |
1589 | |
1590 | |
1591 | gfc_expr * |
1592 | gfc_simplify_bessel_y1 (gfc_expr *x) |
1593 | { |
1594 | gfc_expr *result; |
1595 | |
1596 | if (x->expr_type != EXPR_CONSTANT) |
1597 | return NULL__null; |
1598 | |
1599 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1600 | mpfr_y1 (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1601 | |
1602 | return range_check (result, "BESSEL_Y1"); |
1603 | } |
1604 | |
1605 | |
1606 | gfc_expr * |
1607 | gfc_simplify_bessel_yn (gfc_expr *order, gfc_expr *x) |
1608 | { |
1609 | gfc_expr *result; |
1610 | long n; |
1611 | |
1612 | if (x->expr_type != EXPR_CONSTANT || order->expr_type != EXPR_CONSTANT) |
1613 | return NULL__null; |
1614 | |
1615 | n = mpz_get_si__gmpz_get_si (order->value.integer); |
1616 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1617 | mpfr_yn (result->value.real, n, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1618 | |
1619 | return range_check (result, "BESSEL_YN"); |
1620 | } |
1621 | |
1622 | |
1623 | gfc_expr * |
1624 | gfc_simplify_bessel_yn2 (gfc_expr *order1, gfc_expr *order2, gfc_expr *x) |
1625 | { |
1626 | return gfc_simplify_bessel_n2 (order1, order2, x, false); |
1627 | } |
1628 | |
1629 | |
1630 | gfc_expr * |
1631 | gfc_simplify_bit_size (gfc_expr *e) |
1632 | { |
1633 | int i = gfc_validate_kind (e->ts.type, e->ts.kind, false); |
1634 | return gfc_get_int_expr (e->ts.kind, &e->where, |
1635 | gfc_integer_kinds[i].bit_size); |
1636 | } |
1637 | |
1638 | |
1639 | gfc_expr * |
1640 | gfc_simplify_btest (gfc_expr *e, gfc_expr *bit) |
1641 | { |
1642 | int b; |
1643 | |
1644 | if (e->expr_type != EXPR_CONSTANT || bit->expr_type != EXPR_CONSTANT) |
1645 | return NULL__null; |
1646 | |
1647 | if (gfc_extract_int (bit, &b) || b < 0) |
1648 | return gfc_get_logical_expr (gfc_default_logical_kind, &e->where, false); |
1649 | |
1650 | return gfc_get_logical_expr (gfc_default_logical_kind, &e->where, |
1651 | mpz_tstbit__gmpz_tstbit (e->value.integer, b)); |
1652 | } |
1653 | |
1654 | |
1655 | static int |
1656 | compare_bitwise (gfc_expr *i, gfc_expr *j) |
1657 | { |
1658 | mpz_t x, y; |
1659 | int k, res; |
1660 | |
1661 | gcc_assert (i->ts.type == BT_INTEGER)((void)(!(i->ts.type == BT_INTEGER) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 1661, __FUNCTION__), 0 : 0)); |
1662 | gcc_assert (j->ts.type == BT_INTEGER)((void)(!(j->ts.type == BT_INTEGER) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 1662, __FUNCTION__), 0 : 0)); |
1663 | |
1664 | mpz_init_set__gmpz_init_set (x, i->value.integer); |
1665 | k = gfc_validate_kind (i->ts.type, i->ts.kind, false); |
1666 | convert_mpz_to_unsigned (x, gfc_integer_kinds[k].bit_size); |
1667 | |
1668 | mpz_init_set__gmpz_init_set (y, j->value.integer); |
1669 | k = gfc_validate_kind (j->ts.type, j->ts.kind, false); |
1670 | convert_mpz_to_unsigned (y, gfc_integer_kinds[k].bit_size); |
1671 | |
1672 | res = mpz_cmp__gmpz_cmp (x, y); |
1673 | mpz_clear__gmpz_clear (x); |
1674 | mpz_clear__gmpz_clear (y); |
1675 | return res; |
1676 | } |
1677 | |
1678 | |
1679 | gfc_expr * |
1680 | gfc_simplify_bge (gfc_expr *i, gfc_expr *j) |
1681 | { |
1682 | if (i->expr_type != EXPR_CONSTANT || j->expr_type != EXPR_CONSTANT) |
1683 | return NULL__null; |
1684 | |
1685 | return gfc_get_logical_expr (gfc_default_logical_kind, &i->where, |
1686 | compare_bitwise (i, j) >= 0); |
1687 | } |
1688 | |
1689 | |
1690 | gfc_expr * |
1691 | gfc_simplify_bgt (gfc_expr *i, gfc_expr *j) |
1692 | { |
1693 | if (i->expr_type != EXPR_CONSTANT || j->expr_type != EXPR_CONSTANT) |
1694 | return NULL__null; |
1695 | |
1696 | return gfc_get_logical_expr (gfc_default_logical_kind, &i->where, |
1697 | compare_bitwise (i, j) > 0); |
1698 | } |
1699 | |
1700 | |
1701 | gfc_expr * |
1702 | gfc_simplify_ble (gfc_expr *i, gfc_expr *j) |
1703 | { |
1704 | if (i->expr_type != EXPR_CONSTANT || j->expr_type != EXPR_CONSTANT) |
1705 | return NULL__null; |
1706 | |
1707 | return gfc_get_logical_expr (gfc_default_logical_kind, &i->where, |
1708 | compare_bitwise (i, j) <= 0); |
1709 | } |
1710 | |
1711 | |
1712 | gfc_expr * |
1713 | gfc_simplify_blt (gfc_expr *i, gfc_expr *j) |
1714 | { |
1715 | if (i->expr_type != EXPR_CONSTANT || j->expr_type != EXPR_CONSTANT) |
1716 | return NULL__null; |
1717 | |
1718 | return gfc_get_logical_expr (gfc_default_logical_kind, &i->where, |
1719 | compare_bitwise (i, j) < 0); |
1720 | } |
1721 | |
1722 | |
1723 | gfc_expr * |
1724 | gfc_simplify_ceiling (gfc_expr *e, gfc_expr *k) |
1725 | { |
1726 | gfc_expr *ceil, *result; |
1727 | int kind; |
1728 | |
1729 | kind = get_kind (BT_INTEGER, k, "CEILING", gfc_default_integer_kind); |
1730 | if (kind == -1) |
1731 | return &gfc_bad_expr; |
1732 | |
1733 | if (e->expr_type != EXPR_CONSTANT) |
1734 | return NULL__null; |
1735 | |
1736 | ceil = gfc_copy_expr (e); |
1737 | mpfr_ceil (ceil->value.real, e->value.real)mpfr_rint((ceil->value.real), (e->value.real), MPFR_RNDU ); |
1738 | |
1739 | result = gfc_get_constant_expr (BT_INTEGER, kind, &e->where); |
1740 | gfc_mpfr_to_mpz (result->value.integer, ceil->value.real, &e->where); |
1741 | |
1742 | gfc_free_expr (ceil); |
1743 | |
1744 | return range_check (result, "CEILING"); |
1745 | } |
1746 | |
1747 | |
1748 | gfc_expr * |
1749 | gfc_simplify_char (gfc_expr *e, gfc_expr *k) |
1750 | { |
1751 | return simplify_achar_char (e, k, "CHAR", false); |
1752 | } |
1753 | |
1754 | |
1755 | /* Common subroutine for simplifying CMPLX, COMPLEX and DCMPLX. */ |
1756 | |
1757 | static gfc_expr * |
1758 | simplify_cmplx (const char *name, gfc_expr *x, gfc_expr *y, int kind) |
1759 | { |
1760 | gfc_expr *result; |
1761 | |
1762 | if (x->expr_type != EXPR_CONSTANT |
1763 | || (y != NULL__null && y->expr_type != EXPR_CONSTANT)) |
1764 | return NULL__null; |
1765 | |
1766 | result = gfc_get_constant_expr (BT_COMPLEX, kind, &x->where); |
1767 | |
1768 | switch (x->ts.type) |
1769 | { |
1770 | case BT_INTEGER: |
1771 | mpc_set_z (result->value.complex, x->value.integer, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
1772 | break; |
1773 | |
1774 | case BT_REAL: |
1775 | mpc_set_fr (result->value.complex, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1776 | break; |
1777 | |
1778 | case BT_COMPLEX: |
1779 | mpc_set (result->value.complex, x->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
1780 | break; |
1781 | |
1782 | default: |
1783 | gfc_internal_error ("gfc_simplify_dcmplx(): Bad type (x)"); |
1784 | } |
1785 | |
1786 | if (!y) |
1787 | return range_check (result, name); |
1788 | |
1789 | switch (y->ts.type) |
1790 | { |
1791 | case BT_INTEGER: |
1792 | mpfr_set_z (mpc_imagref (result->value.complex)((result->value.complex)->im), |
1793 | y->value.integer, GFC_RND_MODEMPFR_RNDN); |
1794 | break; |
1795 | |
1796 | case BT_REAL: |
1797 | mpfr_set (mpc_imagref (result->value.complex),mpfr_set4(((result->value.complex)->im),y->value.real ,MPFR_RNDN,((y->value.real)->_mpfr_sign)) |
1798 | y->value.real, GFC_RND_MODE)mpfr_set4(((result->value.complex)->im),y->value.real ,MPFR_RNDN,((y->value.real)->_mpfr_sign)); |
1799 | break; |
1800 | |
1801 | default: |
1802 | gfc_internal_error ("gfc_simplify_dcmplx(): Bad type (y)"); |
1803 | } |
1804 | |
1805 | return range_check (result, name); |
1806 | } |
1807 | |
1808 | |
1809 | gfc_expr * |
1810 | gfc_simplify_cmplx (gfc_expr *x, gfc_expr *y, gfc_expr *k) |
1811 | { |
1812 | int kind; |
1813 | |
1814 | kind = get_kind (BT_REAL, k, "CMPLX", gfc_default_complex_kind); |
1815 | if (kind == -1) |
1816 | return &gfc_bad_expr; |
1817 | |
1818 | return simplify_cmplx ("CMPLX", x, y, kind); |
1819 | } |
1820 | |
1821 | |
1822 | gfc_expr * |
1823 | gfc_simplify_complex (gfc_expr *x, gfc_expr *y) |
1824 | { |
1825 | int kind; |
1826 | |
1827 | if (x->ts.type == BT_INTEGER && y->ts.type == BT_INTEGER) |
1828 | kind = gfc_default_complex_kind; |
1829 | else if (x->ts.type == BT_REAL || y->ts.type == BT_INTEGER) |
1830 | kind = x->ts.kind; |
1831 | else if (x->ts.type == BT_INTEGER || y->ts.type == BT_REAL) |
1832 | kind = y->ts.kind; |
1833 | else if (x->ts.type == BT_REAL && y->ts.type == BT_REAL) |
1834 | kind = (x->ts.kind > y->ts.kind) ? x->ts.kind : y->ts.kind; |
1835 | else |
1836 | gcc_unreachable ()(fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 1836, __FUNCTION__)); |
1837 | |
1838 | return simplify_cmplx ("COMPLEX", x, y, kind); |
1839 | } |
1840 | |
1841 | |
1842 | gfc_expr * |
1843 | gfc_simplify_conjg (gfc_expr *e) |
1844 | { |
1845 | gfc_expr *result; |
1846 | |
1847 | if (e->expr_type != EXPR_CONSTANT) |
1848 | return NULL__null; |
1849 | |
1850 | result = gfc_copy_expr (e); |
1851 | mpc_conj (result->value.complex, result->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
1852 | |
1853 | return range_check (result, "CONJG"); |
1854 | } |
1855 | |
1856 | |
1857 | /* Simplify atan2d (x) where the unit is degree. */ |
1858 | |
1859 | gfc_expr * |
1860 | gfc_simplify_atan2d (gfc_expr *y, gfc_expr *x) |
1861 | { |
1862 | gfc_expr *result; |
1863 | |
1864 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) |
1865 | return NULL__null; |
1866 | |
1867 | if (mpfr_zero_p (y->value.real)((y->value.real)->_mpfr_exp == (0 - ((mpfr_exp_t) (((mpfr_uexp_t ) -1) >> 1)))) && mpfr_zero_p (x->value.real)((x->value.real)->_mpfr_exp == (0 - ((mpfr_exp_t) (((mpfr_uexp_t ) -1) >> 1))))) |
1868 | { |
1869 | gfc_error ("If first argument of ATAN2D at %L is zero, then the " |
1870 | "second argument must not be zero", &y->where); |
1871 | return &gfc_bad_expr; |
1872 | } |
1873 | |
1874 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1875 | mpfr_atan2 (result->value.real, y->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1876 | rad2deg (result->value.real); |
1877 | |
1878 | return range_check (result, "ATAN2D"); |
1879 | } |
1880 | |
1881 | |
1882 | gfc_expr * |
1883 | gfc_simplify_cos (gfc_expr *x) |
1884 | { |
1885 | gfc_expr *result; |
1886 | |
1887 | if (x->expr_type != EXPR_CONSTANT) |
1888 | return NULL__null; |
1889 | |
1890 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1891 | |
1892 | switch (x->ts.type) |
1893 | { |
1894 | case BT_REAL: |
1895 | mpfr_cos (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1896 | break; |
1897 | |
1898 | case BT_COMPLEX: |
1899 | gfc_set_model_kind (x->ts.kind); |
1900 | mpc_cos (result->value.complex, x->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
1901 | break; |
1902 | |
1903 | default: |
1904 | gfc_internal_error ("in gfc_simplify_cos(): Bad type"); |
1905 | } |
1906 | |
1907 | return range_check (result, "COS"); |
1908 | } |
1909 | |
1910 | |
1911 | static void |
1912 | deg2rad (mpfr_t x) |
1913 | { |
1914 | mpfr_t d2r; |
1915 | |
1916 | mpfr_init (d2r); |
1917 | mpfr_const_pi (d2r, GFC_RND_MODEMPFR_RNDN); |
1918 | mpfr_div_ui (d2r, d2r, 180, GFC_RND_MODEMPFR_RNDN); |
1919 | mpfr_mul (x, x, d2r, GFC_RND_MODEMPFR_RNDN); |
1920 | mpfr_clear (d2r); |
1921 | } |
1922 | |
1923 | |
1924 | /* Simplification routines for SIND, COSD, TAND. */ |
1925 | #include "trigd_fe.inc" |
1926 | |
1927 | |
1928 | /* Simplify COSD(X) where X has the unit of degree. */ |
1929 | |
1930 | gfc_expr * |
1931 | gfc_simplify_cosd (gfc_expr *x) |
1932 | { |
1933 | gfc_expr *result; |
1934 | |
1935 | if (x->expr_type != EXPR_CONSTANT) |
1936 | return NULL__null; |
1937 | |
1938 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1939 | mpfr_set (result->value.real, x->value.real, GFC_RND_MODE)mpfr_set4(result->value.real,x->value.real,MPFR_RNDN,(( x->value.real)->_mpfr_sign)); |
1940 | simplify_cosd (result->value.real); |
1941 | |
1942 | return range_check (result, "COSD"); |
1943 | } |
1944 | |
1945 | |
1946 | /* Simplify SIND(X) where X has the unit of degree. */ |
1947 | |
1948 | gfc_expr * |
1949 | gfc_simplify_sind (gfc_expr *x) |
1950 | { |
1951 | gfc_expr *result; |
1952 | |
1953 | if (x->expr_type != EXPR_CONSTANT) |
1954 | return NULL__null; |
1955 | |
1956 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1957 | mpfr_set (result->value.real, x->value.real, GFC_RND_MODE)mpfr_set4(result->value.real,x->value.real,MPFR_RNDN,(( x->value.real)->_mpfr_sign)); |
1958 | simplify_sind (result->value.real); |
1959 | |
1960 | return range_check (result, "SIND"); |
1961 | } |
1962 | |
1963 | |
1964 | /* Simplify TAND(X) where X has the unit of degree. */ |
1965 | |
1966 | gfc_expr * |
1967 | gfc_simplify_tand (gfc_expr *x) |
1968 | { |
1969 | gfc_expr *result; |
1970 | |
1971 | if (x->expr_type != EXPR_CONSTANT) |
1972 | return NULL__null; |
1973 | |
1974 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1975 | mpfr_set (result->value.real, x->value.real, GFC_RND_MODE)mpfr_set4(result->value.real,x->value.real,MPFR_RNDN,(( x->value.real)->_mpfr_sign)); |
1976 | simplify_tand (result->value.real); |
1977 | |
1978 | return range_check (result, "TAND"); |
1979 | } |
1980 | |
1981 | |
1982 | /* Simplify COTAND(X) where X has the unit of degree. */ |
1983 | |
1984 | gfc_expr * |
1985 | gfc_simplify_cotand (gfc_expr *x) |
1986 | { |
1987 | gfc_expr *result; |
1988 | |
1989 | if (x->expr_type != EXPR_CONSTANT) |
1990 | return NULL__null; |
1991 | |
1992 | /* Implement COTAND = -TAND(x+90). |
1993 | TAND offers correct exact values for multiples of 30 degrees. |
1994 | This implementation is also compatible with the behavior of some legacy |
1995 | compilers. Keep this consistent with gfc_conv_intrinsic_cotand. */ |
1996 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1997 | mpfr_set (result->value.real, x->value.real, GFC_RND_MODE)mpfr_set4(result->value.real,x->value.real,MPFR_RNDN,(( x->value.real)->_mpfr_sign)); |
1998 | mpfr_add_ui (result->value.real, result->value.real, 90, GFC_RND_MODEMPFR_RNDN); |
1999 | simplify_tand (result->value.real); |
2000 | mpfr_neg (result->value.real, result->value.real, GFC_RND_MODEMPFR_RNDN); |
2001 | |
2002 | return range_check (result, "COTAND"); |
2003 | } |
2004 | |
2005 | |
2006 | gfc_expr * |
2007 | gfc_simplify_cosh (gfc_expr *x) |
2008 | { |
2009 | gfc_expr *result; |
2010 | |
2011 | if (x->expr_type != EXPR_CONSTANT) |
2012 | return NULL__null; |
2013 | |
2014 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
2015 | |
2016 | switch (x->ts.type) |
2017 | { |
2018 | case BT_REAL: |
2019 | mpfr_cosh (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
2020 | break; |
2021 | |
2022 | case BT_COMPLEX: |
2023 | mpc_cosh (result->value.complex, x->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
2024 | break; |
2025 | |
2026 | default: |
2027 | gcc_unreachable ()(fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 2027, __FUNCTION__)); |
2028 | } |
2029 | |
2030 | return range_check (result, "COSH"); |
2031 | } |
2032 | |
2033 | |
2034 | gfc_expr * |
2035 | gfc_simplify_count (gfc_expr *mask, gfc_expr *dim, gfc_expr *kind) |
2036 | { |
2037 | gfc_expr *result; |
2038 | bool size_zero; |
2039 | |
2040 | size_zero = gfc_is_size_zero_array (mask); |
2041 | |
2042 | if (!(is_constant_array_expr (mask) || size_zero) |
2043 | || !gfc_is_constant_expr (dim) |
2044 | || !gfc_is_constant_expr (kind)) |
2045 | return NULL__null; |
2046 | |
2047 | result = transformational_result (mask, dim, |
2048 | BT_INTEGER, |
2049 | get_kind (BT_INTEGER, kind, "COUNT", |
2050 | gfc_default_integer_kind), |
2051 | &mask->where); |
2052 | |
2053 | init_result_expr (result, 0, NULL__null); |
2054 | |
2055 | if (size_zero) |
2056 | return result; |
2057 | |
2058 | /* Passing MASK twice, once as data array, once as mask. |
2059 | Whenever gfc_count is called, '1' is added to the result. */ |
2060 | return !dim || mask->rank == 1 ? |
2061 | simplify_transformation_to_scalar (result, mask, mask, gfc_count) : |
2062 | simplify_transformation_to_array (result, mask, dim, mask, gfc_count, NULL__null); |
2063 | } |
2064 | |
2065 | /* Simplification routine for cshift. This works by copying the array |
2066 | expressions into a one-dimensional array, shuffling the values into another |
2067 | one-dimensional array and creating the new array expression from this. The |
2068 | shuffling part is basically taken from the library routine. */ |
2069 | |
2070 | gfc_expr * |
2071 | gfc_simplify_cshift (gfc_expr *array, gfc_expr *shift, gfc_expr *dim) |
2072 | { |
2073 | gfc_expr *result; |
2074 | int which; |
2075 | gfc_expr **arrayvec, **resultvec; |
2076 | gfc_expr **rptr, **sptr; |
2077 | mpz_t size; |
2078 | size_t arraysize, shiftsize, i; |
2079 | gfc_constructor *array_ctor, *shift_ctor; |
2080 | ssize_t *shiftvec, *hptr; |
2081 | ssize_t shift_val, len; |
2082 | ssize_t count[GFC_MAX_DIMENSIONS15], extent[GFC_MAX_DIMENSIONS15], |
2083 | hs_ex[GFC_MAX_DIMENSIONS15 + 1], |
2084 | hstride[GFC_MAX_DIMENSIONS15], sstride[GFC_MAX_DIMENSIONS15], |
2085 | a_extent[GFC_MAX_DIMENSIONS15], a_stride[GFC_MAX_DIMENSIONS15], |
2086 | h_extent[GFC_MAX_DIMENSIONS15], |
2087 | ss_ex[GFC_MAX_DIMENSIONS15 + 1]; |
2088 | ssize_t rsoffset; |
2089 | int d, n; |
2090 | bool continue_loop; |
2091 | gfc_expr **src, **dest; |
2092 | |
2093 | if (!is_constant_array_expr (array)) |
2094 | return NULL__null; |
2095 | |
2096 | if (shift->rank > 0) |
2097 | gfc_simplify_expr (shift, 1); |
2098 | |
2099 | if (!gfc_is_constant_expr (shift)) |
2100 | return NULL__null; |
2101 | |
2102 | /* Make dim zero-based. */ |
2103 | if (dim) |
2104 | { |
2105 | if (!gfc_is_constant_expr (dim)) |
2106 | return NULL__null; |
2107 | which = mpz_get_si__gmpz_get_si (dim->value.integer) - 1; |
2108 | } |
2109 | else |
2110 | which = 0; |
2111 | |
2112 | gfc_array_size (array, &size); |
2113 | arraysize = mpz_get_ui__gmpz_get_ui (size); |
2114 | mpz_clear__gmpz_clear (size); |
2115 | |
2116 | result = gfc_get_array_expr (array->ts.type, array->ts.kind, &array->where); |
2117 | result->shape = gfc_copy_shape (array->shape, array->rank); |
2118 | result->rank = array->rank; |
2119 | result->ts.u.derived = array->ts.u.derived; |
2120 | |
2121 | if (arraysize == 0) |
2122 | return result; |
2123 | |
2124 | arrayvec = XCNEWVEC (gfc_expr *, arraysize)((gfc_expr * *) xcalloc ((arraysize), sizeof (gfc_expr *))); |
2125 | array_ctor = gfc_constructor_first (array->value.constructor); |
2126 | for (i = 0; i < arraysize; i++) |
2127 | { |
2128 | arrayvec[i] = array_ctor->expr; |
2129 | array_ctor = gfc_constructor_next (array_ctor); |
2130 | } |
2131 | |
2132 | resultvec = XCNEWVEC (gfc_expr *, arraysize)((gfc_expr * *) xcalloc ((arraysize), sizeof (gfc_expr *))); |
2133 | |
2134 | extent[0] = 1; |
2135 | count[0] = 0; |
2136 | |
2137 | for (d=0; d < array->rank; d++) |
2138 | { |
2139 | a_extent[d] = mpz_get_si__gmpz_get_si (array->shape[d]); |
2140 | a_stride[d] = d == 0 ? 1 : a_stride[d-1] * a_extent[d-1]; |
2141 | } |
2142 | |
2143 | if (shift->rank > 0) |
2144 | { |
2145 | gfc_array_size (shift, &size); |
2146 | shiftsize = mpz_get_ui__gmpz_get_ui (size); |
2147 | mpz_clear__gmpz_clear (size); |
2148 | shiftvec = XCNEWVEC (ssize_t, shiftsize)((ssize_t *) xcalloc ((shiftsize), sizeof (ssize_t))); |
2149 | shift_ctor = gfc_constructor_first (shift->value.constructor); |
2150 | for (d = 0; d < shift->rank; d++) |
2151 | { |
2152 | h_extent[d] = mpz_get_si__gmpz_get_si (shift->shape[d]); |
2153 | hstride[d] = d == 0 ? 1 : hstride[d-1] * h_extent[d-1]; |
2154 | } |
2155 | } |
2156 | else |
2157 | shiftvec = NULL__null; |
2158 | |
2159 | /* Shut up compiler */ |
2160 | len = 1; |
2161 | rsoffset = 1; |
2162 | |
2163 | n = 0; |
2164 | for (d=0; d < array->rank; d++) |
2165 | { |
2166 | if (d == which) |
2167 | { |
2168 | rsoffset = a_stride[d]; |
2169 | len = a_extent[d]; |
2170 | } |
2171 | else |
2172 | { |
2173 | count[n] = 0; |
2174 | extent[n] = a_extent[d]; |
2175 | sstride[n] = a_stride[d]; |
2176 | ss_ex[n] = sstride[n] * extent[n]; |
2177 | if (shiftvec) |
2178 | hs_ex[n] = hstride[n] * extent[n]; |
2179 | n++; |
2180 | } |
2181 | } |
2182 | ss_ex[n] = 0; |
2183 | hs_ex[n] = 0; |
2184 | |
2185 | if (shiftvec) |
2186 | { |
2187 | for (i = 0; i < shiftsize; i++) |
2188 | { |
2189 | ssize_t val; |
2190 | val = mpz_get_si__gmpz_get_si (shift_ctor->expr->value.integer); |
2191 | val = val % len; |
2192 | if (val < 0) |
2193 | val += len; |
2194 | shiftvec[i] = val; |
2195 | shift_ctor = gfc_constructor_next (shift_ctor); |
2196 | } |
2197 | shift_val = 0; |
2198 | } |
2199 | else |
2200 | { |
2201 | shift_val = mpz_get_si__gmpz_get_si (shift->value.integer); |
2202 | shift_val = shift_val % len; |
2203 | if (shift_val < 0) |
2204 | shift_val += len; |
2205 | } |
2206 | |
2207 | continue_loop = true; |
2208 | d = array->rank; |
2209 | rptr = resultvec; |
2210 | sptr = arrayvec; |
2211 | hptr = shiftvec; |
2212 | |
2213 | while (continue_loop) |
2214 | { |
2215 | ssize_t sh; |
2216 | if (shiftvec) |
2217 | sh = *hptr; |
2218 | else |
2219 | sh = shift_val; |
2220 | |
2221 | src = &sptr[sh * rsoffset]; |
2222 | dest = rptr; |
2223 | for (n = 0; n < len - sh; n++) |
2224 | { |
2225 | *dest = *src; |
2226 | dest += rsoffset; |
2227 | src += rsoffset; |
2228 | } |
2229 | src = sptr; |
2230 | for ( n = 0; n < sh; n++) |
2231 | { |
2232 | *dest = *src; |
2233 | dest += rsoffset; |
2234 | src += rsoffset; |
2235 | } |
2236 | rptr += sstride[0]; |
2237 | sptr += sstride[0]; |
2238 | if (shiftvec) |
2239 | hptr += hstride[0]; |
2240 | count[0]++; |
2241 | n = 0; |
2242 | while (count[n] == extent[n]) |
2243 | { |
2244 | count[n] = 0; |
2245 | rptr -= ss_ex[n]; |
2246 | sptr -= ss_ex[n]; |
2247 | if (shiftvec) |
2248 | hptr -= hs_ex[n]; |
2249 | n++; |
2250 | if (n >= d - 1) |
2251 | { |
2252 | continue_loop = false; |
2253 | break; |
2254 | } |
2255 | else |
2256 | { |
2257 | count[n]++; |
2258 | rptr += sstride[n]; |
2259 | sptr += sstride[n]; |
2260 | if (shiftvec) |
2261 | hptr += hstride[n]; |
2262 | } |
2263 | } |
2264 | } |
2265 | |
2266 | for (i = 0; i < arraysize; i++) |
2267 | { |
2268 | gfc_constructor_append_expr (&result->value.constructor, |
2269 | gfc_copy_expr (resultvec[i]), |
2270 | NULL__null); |
2271 | } |
2272 | return result; |
2273 | } |
2274 | |
2275 | |
2276 | gfc_expr * |
2277 | gfc_simplify_dcmplx (gfc_expr *x, gfc_expr *y) |
2278 | { |
2279 | return simplify_cmplx ("DCMPLX", x, y, gfc_default_double_kind); |
2280 | } |
2281 | |
2282 | |
2283 | gfc_expr * |
2284 | gfc_simplify_dble (gfc_expr *e) |
2285 | { |
2286 | gfc_expr *result = NULL__null; |
2287 | int tmp1, tmp2; |
2288 | |
2289 | if (e->expr_type != EXPR_CONSTANT) |
2290 | return NULL__null; |
2291 | |
2292 | /* For explicit conversion, turn off -Wconversion and -Wconversion-extra |
2293 | warnings. */ |
2294 | tmp1 = warn_conversionglobal_options.x_warn_conversion; |
2295 | tmp2 = warn_conversion_extraglobal_options.x_warn_conversion_extra; |
2296 | warn_conversionglobal_options.x_warn_conversion = warn_conversion_extraglobal_options.x_warn_conversion_extra = 0; |
2297 | |
2298 | result = gfc_convert_constant (e, BT_REAL, gfc_default_double_kind); |
2299 | |
2300 | warn_conversionglobal_options.x_warn_conversion = tmp1; |
2301 | warn_conversion_extraglobal_options.x_warn_conversion_extra = tmp2; |
2302 | |
2303 | if (result == &gfc_bad_expr) |
2304 | return &gfc_bad_expr; |
2305 | |
2306 | return range_check (result, "DBLE"); |
2307 | } |
2308 | |
2309 | |
2310 | gfc_expr * |
2311 | gfc_simplify_digits (gfc_expr *x) |
2312 | { |
2313 | int i, digits; |
2314 | |
2315 | i = gfc_validate_kind (x->ts.type, x->ts.kind, false); |
2316 | |
2317 | switch (x->ts.type) |
2318 | { |
2319 | case BT_INTEGER: |
2320 | digits = gfc_integer_kinds[i].digits; |
2321 | break; |
2322 | |
2323 | case BT_REAL: |
2324 | case BT_COMPLEX: |
2325 | digits = gfc_real_kinds[i].digits; |
2326 | break; |
2327 | |
2328 | default: |
2329 | gcc_unreachable ()(fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 2329, __FUNCTION__)); |
2330 | } |
2331 | |
2332 | return gfc_get_int_expr (gfc_default_integer_kind, NULL__null, digits); |
2333 | } |
2334 | |
2335 | |
2336 | gfc_expr * |
2337 | gfc_simplify_dim (gfc_expr *x, gfc_expr *y) |
2338 | { |
2339 | gfc_expr *result; |
2340 | int kind; |
2341 | |
2342 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) |
2343 | return NULL__null; |
2344 | |
2345 | kind = x->ts.kind > y->ts.kind ? x->ts.kind : y->ts.kind; |
2346 | result = gfc_get_constant_expr (x->ts.type, kind, &x->where); |
2347 | |
2348 | switch (x->ts.type) |
2349 | { |
2350 | case BT_INTEGER: |
2351 | if (mpz_cmp__gmpz_cmp (x->value.integer, y->value.integer) > 0) |
2352 | mpz_sub__gmpz_sub (result->value.integer, x->value.integer, y->value.integer); |
2353 | else |
2354 | mpz_set_ui__gmpz_set_ui (result->value.integer, 0); |
2355 | |
2356 | break; |
2357 | |
2358 | case BT_REAL: |
2359 | if (mpfr_cmp (x->value.real, y->value.real)mpfr_cmp3(x->value.real, y->value.real, 1) > 0) |
2360 | mpfr_sub (result->value.real, x->value.real, y->value.real, |
2361 | GFC_RND_MODEMPFR_RNDN); |
2362 | else |
2363 | mpfr_set_ui (result->value.real, 0, GFC_RND_MODEMPFR_RNDN); |
2364 | |
2365 | break; |
2366 | |
2367 | default: |
2368 | gfc_internal_error ("gfc_simplify_dim(): Bad type"); |
2369 | } |
2370 | |
2371 | return range_check (result, "DIM"); |
2372 | } |
2373 | |
2374 | |
2375 | gfc_expr* |
2376 | gfc_simplify_dot_product (gfc_expr *vector_a, gfc_expr *vector_b) |
2377 | { |
2378 | /* If vector_a is a zero-sized array, the result is 0 for INTEGER, |
2379 | REAL, and COMPLEX types and .false. for LOGICAL. */ |
2380 | if (vector_a->shape && mpz_get_si__gmpz_get_si (vector_a->shape[0]) == 0) |
2381 | { |
2382 | if (vector_a->ts.type == BT_LOGICAL) |
2383 | return gfc_get_logical_expr (gfc_default_logical_kind, NULL__null, false); |
2384 | else |
2385 | return gfc_get_int_expr (gfc_default_integer_kind, NULL__null, 0); |
2386 | } |
2387 | |
2388 | if (!is_constant_array_expr (vector_a) |
2389 | || !is_constant_array_expr (vector_b)) |
2390 | return NULL__null; |
2391 | |
2392 | return compute_dot_product (vector_a, 1, 0, vector_b, 1, 0, true); |
2393 | } |
2394 | |
2395 | |
2396 | gfc_expr * |
2397 | gfc_simplify_dprod (gfc_expr *x, gfc_expr *y) |
2398 | { |
2399 | gfc_expr *a1, *a2, *result; |
2400 | |
2401 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) |
2402 | return NULL__null; |
2403 | |
2404 | a1 = gfc_real2real (x, gfc_default_double_kind); |
2405 | a2 = gfc_real2real (y, gfc_default_double_kind); |
2406 | |
2407 | result = gfc_get_constant_expr (BT_REAL, gfc_default_double_kind, &x->where); |
2408 | mpfr_mul (result->value.real, a1->value.real, a2->value.real, GFC_RND_MODEMPFR_RNDN); |
2409 | |
2410 | gfc_free_expr (a2); |
2411 | gfc_free_expr (a1); |
2412 | |
2413 | return range_check (result, "DPROD"); |
2414 | } |
2415 | |
2416 | |
2417 | static gfc_expr * |
2418 | simplify_dshift (gfc_expr *arg1, gfc_expr *arg2, gfc_expr *shiftarg, |
2419 | bool right) |
2420 | { |
2421 | gfc_expr *result; |
2422 | int i, k, size, shift; |
2423 | |
2424 | if (arg1->expr_type != EXPR_CONSTANT || arg2->expr_type != EXPR_CONSTANT |
2425 | || shiftarg->expr_type != EXPR_CONSTANT) |
2426 | return NULL__null; |
2427 | |
2428 | k = gfc_validate_kind (BT_INTEGER, arg1->ts.kind, false); |
2429 | size = gfc_integer_kinds[k].bit_size; |
2430 | |
2431 | gfc_extract_int (shiftarg, &shift); |
2432 | |
2433 | /* DSHIFTR(I,J,SHIFT) = DSHIFTL(I,J,SIZE-SHIFT). */ |
2434 | if (right) |
2435 | shift = size - shift; |
2436 | |
2437 | result = gfc_get_constant_expr (BT_INTEGER, arg1->ts.kind, &arg1->where); |
2438 | mpz_set_ui__gmpz_set_ui (result->value.integer, 0); |
2439 | |
2440 | for (i = 0; i < shift; i++) |
2441 | if (mpz_tstbit__gmpz_tstbit (arg2->value.integer, size - shift + i)) |
2442 | mpz_setbit__gmpz_setbit (result->value.integer, i); |
2443 | |
2444 | for (i = 0; i < size - shift; i++) |
2445 | if (mpz_tstbit__gmpz_tstbit (arg1->value.integer, i)) |
2446 | mpz_setbit__gmpz_setbit (result->value.integer, shift + i); |
2447 | |
2448 | /* Convert to a signed value. */ |
2449 | gfc_convert_mpz_to_signed (result->value.integer, size); |
2450 | |
2451 | return result; |
2452 | } |
2453 | |
2454 | |
2455 | gfc_expr * |
2456 | gfc_simplify_dshiftr (gfc_expr *arg1, gfc_expr *arg2, gfc_expr *shiftarg) |
2457 | { |
2458 | return simplify_dshift (arg1, arg2, shiftarg, true); |
2459 | } |
2460 | |
2461 | |
2462 | gfc_expr * |
2463 | gfc_simplify_dshiftl (gfc_expr *arg1, gfc_expr *arg2, gfc_expr *shiftarg) |
2464 | { |
2465 | return simplify_dshift (arg1, arg2, shiftarg, false); |
2466 | } |
2467 | |
2468 | |
2469 | gfc_expr * |
2470 | gfc_simplify_eoshift (gfc_expr *array, gfc_expr *shift, gfc_expr *boundary, |
2471 | gfc_expr *dim) |
2472 | { |
2473 | bool temp_boundary; |
2474 | gfc_expr *bnd; |
2475 | gfc_expr *result; |
2476 | int which; |
2477 | gfc_expr **arrayvec, **resultvec; |
2478 | gfc_expr **rptr, **sptr; |
2479 | mpz_t size; |
2480 | size_t arraysize, i; |
2481 | gfc_constructor *array_ctor, *shift_ctor, *bnd_ctor; |
2482 | ssize_t shift_val, len; |
2483 | ssize_t count[GFC_MAX_DIMENSIONS15], extent[GFC_MAX_DIMENSIONS15], |
2484 | sstride[GFC_MAX_DIMENSIONS15], a_extent[GFC_MAX_DIMENSIONS15], |
2485 | a_stride[GFC_MAX_DIMENSIONS15], ss_ex[GFC_MAX_DIMENSIONS15 + 1]; |
2486 | ssize_t rsoffset; |
2487 | int d, n; |
2488 | bool continue_loop; |
2489 | gfc_expr **src, **dest; |
2490 | size_t s_len; |
2491 | |
2492 | if (!is_constant_array_expr (array)) |
2493 | return NULL__null; |
2494 | |
2495 | if (shift->rank > 0) |
2496 | gfc_simplify_expr (shift, 1); |
2497 | |
2498 | if (!gfc_is_constant_expr (shift)) |
2499 | return NULL__null; |
2500 | |
2501 | if (boundary) |
2502 | { |
2503 | if (boundary->rank > 0) |
2504 | gfc_simplify_expr (boundary, 1); |
2505 | |
2506 | if (!gfc_is_constant_expr (boundary)) |
2507 | return NULL__null; |
2508 | } |
2509 | |
2510 | if (dim) |
2511 | { |
2512 | if (!gfc_is_constant_expr (dim)) |
2513 | return NULL__null; |
2514 | which = mpz_get_si__gmpz_get_si (dim->value.integer) - 1; |
2515 | } |
2516 | else |
2517 | which = 0; |
2518 | |
2519 | s_len = 0; |
Value stored to 's_len' is never read | |
2520 | if (boundary == NULL__null) |
2521 | { |
2522 | temp_boundary = true; |
2523 | switch (array->ts.type) |
2524 | { |
2525 | |
2526 | case BT_INTEGER: |
2527 | bnd = gfc_get_int_expr (array->ts.kind, NULL__null, 0); |
2528 | break; |
2529 | |
2530 | case BT_LOGICAL: |
2531 | bnd = gfc_get_logical_expr (array->ts.kind, NULL__null, 0); |
2532 | break; |
2533 | |
2534 | case BT_REAL: |
2535 | bnd = gfc_get_constant_expr (array->ts.type, array->ts.kind, &gfc_current_locus); |
2536 | mpfr_set_ui (bnd->value.real, 0, GFC_RND_MODEMPFR_RNDN); |
2537 | break; |
2538 | |
2539 | case BT_COMPLEX: |
2540 | bnd = gfc_get_constant_expr (array->ts.type, array->ts.kind, &gfc_current_locus); |
2541 | mpc_set_ui (bnd->value.complex, 0, GFC_RND_MODEMPFR_RNDN); |
2542 | break; |
2543 | |
2544 | case BT_CHARACTER: |
2545 | s_len = mpz_get_ui__gmpz_get_ui (array->ts.u.cl->length->value.integer); |
2546 | bnd = gfc_get_character_expr (array->ts.kind, &gfc_current_locus, NULL__null, s_len); |
2547 | break; |
2548 | |
2549 | default: |
2550 | gcc_unreachable()(fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 2550, __FUNCTION__)); |
2551 | |
2552 | } |
2553 | } |
2554 | else |
2555 | { |
2556 | temp_boundary = false; |
2557 | bnd = boundary; |
2558 | } |
2559 | |
2560 | gfc_array_size (array, &size); |
2561 | arraysize = mpz_get_ui__gmpz_get_ui (size); |
2562 | mpz_clear__gmpz_clear (size); |
2563 | |
2564 | result = gfc_get_array_expr (array->ts.type, array->ts.kind, &array->where); |
2565 | result->shape = gfc_copy_shape (array->shape, array->rank); |
2566 | result->rank = array->rank; |
2567 | result->ts = array->ts; |
2568 | |
2569 | if (arraysize == 0) |
2570 | goto final; |
2571 | |
2572 | arrayvec = XCNEWVEC (gfc_expr *, arraysize)((gfc_expr * *) xcalloc ((arraysize), sizeof (gfc_expr *))); |
2573 | array_ctor = gfc_constructor_first (array->value.constructor); |
2574 | for (i = 0; i < arraysize; i++) |
2575 | { |
2576 | arrayvec[i] = array_ctor->expr; |
2577 | array_ctor = gfc_constructor_next (array_ctor); |
2578 | } |
2579 | |
2580 | resultvec = XCNEWVEC (gfc_expr *, arraysize)((gfc_expr * *) xcalloc ((arraysize), sizeof (gfc_expr *))); |
2581 | |
2582 | extent[0] = 1; |
2583 | count[0] = 0; |
2584 | |
2585 | for (d=0; d < array->rank; d++) |
2586 | { |
2587 | a_extent[d] = mpz_get_si__gmpz_get_si (array->shape[d]); |
2588 | a_stride[d] = d == 0 ? 1 : a_stride[d-1] * a_extent[d-1]; |
2589 | } |
2590 | |
2591 | if (shift->rank > 0) |
2592 | { |
2593 | shift_ctor = gfc_constructor_first (shift->value.constructor); |
2594 | shift_val = 0; |
2595 | } |
2596 | else |
2597 | { |
2598 | shift_ctor = NULL__null; |
2599 | shift_val = mpz_get_si__gmpz_get_si (shift->value.integer); |
2600 | } |
2601 | |
2602 | if (bnd->rank > 0) |
2603 | bnd_ctor = gfc_constructor_first (bnd->value.constructor); |
2604 | else |
2605 | bnd_ctor = NULL__null; |
2606 | |
2607 | /* Shut up compiler */ |
2608 | len = 1; |
2609 | rsoffset = 1; |
2610 | |
2611 | n = 0; |
2612 | for (d=0; d < array->rank; d++) |
2613 | { |
2614 | if (d == which) |
2615 | { |
2616 | rsoffset = a_stride[d]; |
2617 | len = a_extent[d]; |
2618 | } |
2619 | else |
2620 | { |
2621 | count[n] = 0; |
2622 | extent[n] = a_extent[d]; |
2623 | sstride[n] = a_stride[d]; |
2624 | ss_ex[n] = sstride[n] * extent[n]; |
2625 | n++; |
2626 | } |
2627 | } |
2628 | ss_ex[n] = 0; |
2629 | |
2630 | continue_loop = true; |
2631 | d = array->rank; |
2632 | rptr = resultvec; |
2633 | sptr = arrayvec; |
2634 | |
2635 | while (continue_loop) |
2636 | { |
2637 | ssize_t sh, delta; |
2638 | |
2639 | if (shift_ctor) |
2640 | sh = mpz_get_si__gmpz_get_si (shift_ctor->expr->value.integer); |
2641 | else |
2642 | sh = shift_val; |
2643 | |
2644 | if (( sh >= 0 ? sh : -sh ) > len) |
2645 | { |
2646 | delta = len; |
2647 | sh = len; |
2648 | } |
2649 | else |
2650 | delta = (sh >= 0) ? sh: -sh; |
2651 | |
2652 | if (sh > 0) |
2653 | { |
2654 | src = &sptr[delta * rsoffset]; |
2655 | dest = rptr; |
2656 | } |
2657 | else |
2658 | { |
2659 | src = sptr; |
2660 | dest = &rptr[delta * rsoffset]; |
2661 | } |
2662 | |
2663 | for (n = 0; n < len - delta; n++) |
2664 | { |
2665 | *dest = *src; |
2666 | dest += rsoffset; |
2667 | src += rsoffset; |
2668 | } |
2669 | |
2670 | if (sh < 0) |
2671 | dest = rptr; |
2672 | |
2673 | n = delta; |
2674 | |
2675 | if (bnd_ctor) |
2676 | { |
2677 | while (n--) |
2678 | { |
2679 | *dest = gfc_copy_expr (bnd_ctor->expr); |
2680 | dest += rsoffset; |
2681 | } |
2682 | } |
2683 | else |
2684 | { |
2685 | while (n--) |
2686 | { |
2687 | *dest = gfc_copy_expr (bnd); |
2688 | dest += rsoffset; |
2689 | } |
2690 | } |
2691 | rptr += sstride[0]; |
2692 | sptr += sstride[0]; |
2693 | if (shift_ctor) |
2694 | shift_ctor = gfc_constructor_next (shift_ctor); |
2695 | |
2696 | if (bnd_ctor) |
2697 | bnd_ctor = gfc_constructor_next (bnd_ctor); |
2698 | |
2699 | count[0]++; |
2700 | n = 0; |
2701 | while (count[n] == extent[n]) |
2702 | { |
2703 | count[n] = 0; |
2704 | rptr -= ss_ex[n]; |
2705 | sptr -= ss_ex[n]; |
2706 | n++; |
2707 | if (n >= d - 1) |
2708 | { |
2709 | continue_loop = false; |
2710 | break; |
2711 | } |
2712 | else |
2713 | { |
2714 | count[n]++; |
2715 | rptr += sstride[n]; |
2716 | sptr += sstride[n]; |
2717 | } |
2718 | } |
2719 | } |
2720 | |
2721 | for (i = 0; i < arraysize; i++) |
2722 | { |
2723 | gfc_constructor_append_expr (&result->value.constructor, |
2724 | gfc_copy_expr (resultvec[i]), |
2725 | NULL__null); |
2726 | } |
2727 | |
2728 | final: |
2729 | if (temp_boundary) |
2730 | gfc_free_expr (bnd); |
2731 | |
2732 | return result; |
2733 | } |
2734 | |
2735 | gfc_expr * |
2736 | gfc_simplify_erf (gfc_expr *x) |
2737 | { |
2738 | gfc_expr *result; |
2739 | |
2740 | if (x->expr_type != EXPR_CONSTANT) |
2741 | return NULL__null; |
2742 | |
2743 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
2744 | mpfr_erf (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
2745 | |
2746 | return range_check (result, "ERF"); |
2747 | } |
2748 | |
2749 | |
2750 | gfc_expr * |
2751 | gfc_simplify_erfc (gfc_expr *x) |
2752 | { |
2753 | gfc_expr *result; |
2754 | |
2755 | if (x->expr_type != EXPR_CONSTANT) |
2756 | return NULL__null; |
2757 | |
2758 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
2759 | mpfr_erfc (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
2760 | |
2761 | return range_check (result, "ERFC"); |
2762 | } |
2763 | |
2764 | |
2765 | /* Helper functions to simplify ERFC_SCALED(x) = ERFC(x) * EXP(X**2). */ |
2766 | |
2767 | #define MAX_ITER 200 |
2768 | #define ARG_LIMIT 12 |
2769 | |
2770 | /* Calculate ERFC_SCALED directly by its definition: |
2771 | |
2772 | ERFC_SCALED(x) = ERFC(x) * EXP(X**2) |
2773 | |
2774 | using a large precision for intermediate results. This is used for all |
2775 | but large values of the argument. */ |
2776 | static void |
2777 | fullprec_erfc_scaled (mpfr_t res, mpfr_t arg) |
2778 | { |
2779 | mpfr_prec_t prec; |
2780 | mpfr_t a, b; |
2781 | |
2782 | prec = mpfr_get_default_prec (); |
2783 | mpfr_set_default_prec (10 * prec); |
2784 | |
2785 | mpfr_init (a); |
2786 | mpfr_init (b); |
2787 | |
2788 | mpfr_set (a, arg, GFC_RND_MODE)mpfr_set4(a,arg,MPFR_RNDN,((arg)->_mpfr_sign)); |
2789 | mpfr_sqr (b, a, GFC_RND_MODEMPFR_RNDN); |
2790 | mpfr_exp (b, b, GFC_RND_MODEMPFR_RNDN); |
2791 | mpfr_erfc (a, a, GFC_RND_MODEMPFR_RNDN); |
2792 | mpfr_mul (a, a, b, GFC_RND_MODEMPFR_RNDN); |
2793 | |
2794 | mpfr_set (res, a, GFC_RND_MODE)mpfr_set4(res,a,MPFR_RNDN,((a)->_mpfr_sign)); |
2795 | mpfr_set_default_prec (prec); |
2796 | |
2797 | mpfr_clear (a); |
2798 | mpfr_clear (b); |
2799 | } |
2800 | |
2801 | /* Calculate ERFC_SCALED using a power series expansion in 1/arg: |
2802 | |
2803 | ERFC_SCALED(x) = 1 / (x * sqrt(pi)) |
2804 | * (1 + Sum_n (-1)**n * (1 * 3 * 5 * ... * (2n-1)) |
2805 | / (2 * x**2)**n) |
2806 | |
2807 | This is used for large values of the argument. Intermediate calculations |
2808 | are performed with twice the precision. We don't do a fixed number of |
2809 | iterations of the sum, but stop when it has converged to the required |
2810 | precision. */ |
2811 | static void |
2812 | asympt_erfc_scaled (mpfr_t res, mpfr_t arg) |
2813 | { |
2814 | mpfr_t sum, x, u, v, w, oldsum, sumtrunc; |
2815 | mpz_t num; |
2816 | mpfr_prec_t prec; |
2817 | unsigned i; |
2818 | |
2819 | prec = mpfr_get_default_prec (); |
2820 | mpfr_set_default_prec (2 * prec); |
2821 | |
2822 | mpfr_init (sum); |
2823 | mpfr_init (x); |
2824 | mpfr_init (u); |
2825 | mpfr_init (v); |
2826 | mpfr_init (w); |
2827 | mpz_init__gmpz_init (num); |
2828 | |
2829 | mpfr_init (oldsum); |
2830 | mpfr_init (sumtrunc); |
2831 | mpfr_set_prec (oldsum, prec); |
2832 | mpfr_set_prec (sumtrunc, prec); |
2833 | |
2834 | mpfr_set (x, arg, GFC_RND_MODE)mpfr_set4(x,arg,MPFR_RNDN,((arg)->_mpfr_sign)); |
2835 | mpfr_set_ui (sum, 1, GFC_RND_MODEMPFR_RNDN); |
2836 | mpz_set_ui__gmpz_set_ui (num, 1); |
2837 | |
2838 | mpfr_set (u, x, GFC_RND_MODE)mpfr_set4(u,x,MPFR_RNDN,((x)->_mpfr_sign)); |
2839 | mpfr_sqr (u, u, GFC_RND_MODEMPFR_RNDN); |
2840 | mpfr_mul_ui (u, u, 2, GFC_RND_MODEMPFR_RNDN); |
2841 | mpfr_pow_si (u, u, -1, GFC_RND_MODEMPFR_RNDN); |
2842 | |
2843 | for (i = 1; i < MAX_ITER; i++) |
2844 | { |
2845 | mpfr_set (oldsum, sum, GFC_RND_MODE)mpfr_set4(oldsum,sum,MPFR_RNDN,((sum)->_mpfr_sign)); |
2846 | |
2847 | mpz_mul_ui__gmpz_mul_ui (num, num, 2 * i - 1); |
2848 | mpz_neg__gmpz_neg (num, num); |
2849 | |
2850 | mpfr_set (w, u, GFC_RND_MODE)mpfr_set4(w,u,MPFR_RNDN,((u)->_mpfr_sign)); |
2851 | mpfr_pow_ui (w, w, i, GFC_RND_MODEMPFR_RNDN); |
2852 | |
2853 | mpfr_set_z (v, num, GFC_RND_MODEMPFR_RNDN); |
2854 | mpfr_mul (v, v, w, GFC_RND_MODEMPFR_RNDN); |
2855 | |
2856 | mpfr_add (sum, sum, v, GFC_RND_MODEMPFR_RNDN); |
2857 | |
2858 | mpfr_set (sumtrunc, sum, GFC_RND_MODE)mpfr_set4(sumtrunc,sum,MPFR_RNDN,((sum)->_mpfr_sign)); |
2859 | if (mpfr_cmp (sumtrunc, oldsum)mpfr_cmp3(sumtrunc, oldsum, 1) == 0) |
2860 | break; |
2861 | } |
2862 | |
2863 | /* We should have converged by now; otherwise, ARG_LIMIT is probably |
2864 | set too low. */ |
2865 | gcc_assert (i < MAX_ITER)((void)(!(i < MAX_ITER) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 2865, __FUNCTION__), 0 : 0)); |
2866 | |
2867 | /* Divide by x * sqrt(Pi). */ |
2868 | mpfr_const_pi (u, GFC_RND_MODEMPFR_RNDN); |
2869 | mpfr_sqrt (u, u, GFC_RND_MODEMPFR_RNDN); |
2870 | mpfr_mul (u, u, x, GFC_RND_MODEMPFR_RNDN); |
2871 | mpfr_div (sum, sum, u, GFC_RND_MODEMPFR_RNDN); |
2872 | |
2873 | mpfr_set (res, sum, GFC_RND_MODE)mpfr_set4(res,sum,MPFR_RNDN,((sum)->_mpfr_sign)); |
2874 | mpfr_set_default_prec (prec); |
2875 | |
2876 | mpfr_clears (sum, x, u, v, w, oldsum, sumtrunc, NULL__null); |
2877 | mpz_clear__gmpz_clear (num); |
2878 | } |
2879 | |
2880 | |
2881 | gfc_expr * |
2882 | gfc_simplify_erfc_scaled (gfc_expr *x) |
2883 | { |
2884 | gfc_expr *result; |
2885 | |
2886 | if (x->expr_type != EXPR_CONSTANT) |
2887 | return NULL__null; |
2888 | |
2889 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
2890 | if (mpfr_cmp_d (x->value.real, ARG_LIMIT) >= 0) |
2891 | asympt_erfc_scaled (result->value.real, x->value.real); |
2892 | else |
2893 | fullprec_erfc_scaled (result->value.real, x->value.real); |
2894 | |
2895 | return range_check (result, "ERFC_SCALED"); |
2896 | } |
2897 | |
2898 | #undef MAX_ITER |
2899 | #undef ARG_LIMIT |
2900 | |
2901 | |
2902 | gfc_expr * |
2903 | gfc_simplify_epsilon (gfc_expr *e) |
2904 | { |
2905 | gfc_expr *result; |
2906 | int i; |
2907 | |
2908 | i = gfc_validate_kind (e->ts.type, e->ts.kind, false); |
2909 | |
2910 | result = gfc_get_constant_expr (BT_REAL, e->ts.kind, &e->where); |
2911 | mpfr_set (result->value.real, gfc_real_kinds[i].epsilon, GFC_RND_MODE)mpfr_set4(result->value.real,gfc_real_kinds[i].epsilon,MPFR_RNDN ,((gfc_real_kinds[i].epsilon)->_mpfr_sign)); |
2912 | |
2913 | return range_check (result, "EPSILON"); |
2914 | } |
2915 | |
2916 | |
2917 | gfc_expr * |
2918 | gfc_simplify_exp (gfc_expr *x) |
2919 | { |
2920 | gfc_expr *result; |
2921 | |
2922 | if (x->expr_type != EXPR_CONSTANT) |
2923 | return NULL__null; |
2924 | |
2925 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
2926 | |
2927 | switch (x->ts.type) |
2928 | { |
2929 | case BT_REAL: |
2930 | mpfr_exp (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
2931 | break; |
2932 | |
2933 | case BT_COMPLEX: |
2934 | gfc_set_model_kind (x->ts.kind); |
2935 | mpc_exp (result->value.complex, x->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
2936 | break; |
2937 | |
2938 | default: |
2939 | gfc_internal_error ("in gfc_simplify_exp(): Bad type"); |
2940 | } |
2941 | |
2942 | return range_check (result, "EXP"); |
2943 | } |
2944 | |
2945 | |
2946 | gfc_expr * |
2947 | gfc_simplify_exponent (gfc_expr *x) |
2948 | { |
2949 | long int val; |
2950 | gfc_expr *result; |
2951 | |
2952 | if (x->expr_type != EXPR_CONSTANT) |
2953 | return NULL__null; |
2954 | |
2955 | result = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind, |
2956 | &x->where); |
2957 | |
2958 | /* EXPONENT(inf) = EXPONENT(nan) = HUGE(0) */ |
2959 | if (mpfr_inf_p (x->value.real)((x->value.real)->_mpfr_exp == (2 - ((mpfr_exp_t) (((mpfr_uexp_t ) -1) >> 1)))) || mpfr_nan_p (x->value.real)((x->value.real)->_mpfr_exp == (1 - ((mpfr_exp_t) (((mpfr_uexp_t ) -1) >> 1))))) |
2960 | { |
2961 | int i = gfc_validate_kind (BT_INTEGER, gfc_default_integer_kind, false); |
2962 | mpz_set__gmpz_set (result->value.integer, gfc_integer_kinds[i].huge); |
2963 | return result; |
2964 | } |
2965 | |
2966 | /* EXPONENT(+/- 0.0) = 0 */ |
2967 | if (mpfr_zero_p (x->value.real)((x->value.real)->_mpfr_exp == (0 - ((mpfr_exp_t) (((mpfr_uexp_t ) -1) >> 1))))) |
2968 | { |
2969 | mpz_set_ui__gmpz_set_ui (result->value.integer, 0); |
2970 | return result; |
2971 | } |
2972 | |
2973 | gfc_set_model (x->value.real); |
2974 | |
2975 | val = (long int) mpfr_get_exp (x->value.real)(0 ? ((x->value.real)->_mpfr_exp) : ((x->value.real) ->_mpfr_exp)); |
2976 | mpz_set_si__gmpz_set_si (result->value.integer, val); |
2977 | |
2978 | return range_check (result, "EXPONENT"); |
2979 | } |
2980 | |
2981 | |
2982 | gfc_expr * |
2983 | gfc_simplify_failed_or_stopped_images (gfc_expr *team ATTRIBUTE_UNUSED__attribute__ ((__unused__)), |
2984 | gfc_expr *kind) |
2985 | { |
2986 | if (flag_coarrayglobal_options.x_flag_coarray == GFC_FCOARRAY_NONE) |
2987 | { |
2988 | gfc_current_locus = *gfc_current_intrinsic_where; |
2989 | gfc_fatal_error ("Coarrays disabled at %C, use %<-fcoarray=%> to enable"); |
2990 | return &gfc_bad_expr; |
2991 | } |
2992 | |
2993 | if (flag_coarrayglobal_options.x_flag_coarray == GFC_FCOARRAY_SINGLE) |
2994 | { |
2995 | gfc_expr *result; |
2996 | int actual_kind; |
2997 | if (kind) |
2998 | gfc_extract_int (kind, &actual_kind); |
2999 | else |
3000 | actual_kind = gfc_default_integer_kind; |
3001 | |
3002 | result = gfc_get_array_expr (BT_INTEGER, actual_kind, &gfc_current_locus); |
3003 | result->rank = 1; |
3004 | return result; |
3005 | } |
3006 | |
3007 | /* For fcoarray = lib no simplification is possible, because it is not known |
3008 | what images failed or are stopped at compile time. */ |
3009 | return NULL__null; |
3010 | } |
3011 | |
3012 | |
3013 | gfc_expr * |
3014 | gfc_simplify_get_team (gfc_expr *level ATTRIBUTE_UNUSED__attribute__ ((__unused__))) |
3015 | { |
3016 | if (flag_coarrayglobal_options.x_flag_coarray == GFC_FCOARRAY_NONE) |
3017 | { |
3018 | gfc_current_locus = *gfc_current_intrinsic_where; |
3019 | gfc_fatal_error ("Coarrays disabled at %C, use %<-fcoarray=%> to enable"); |
3020 | return &gfc_bad_expr; |
3021 | } |
3022 | |
3023 | if (flag_coarrayglobal_options.x_flag_coarray == GFC_FCOARRAY_SINGLE) |
3024 | { |
3025 | gfc_expr *result; |
3026 | result = gfc_get_array_expr (BT_INTEGER, gfc_default_integer_kind, &gfc_current_locus); |
3027 | result->rank = 0; |
3028 | return result; |
3029 | } |
3030 | |
3031 | /* For fcoarray = lib no simplification is possible, because it is not known |
3032 | what images failed or are stopped at compile time. */ |
3033 | return NULL__null; |
3034 | } |
3035 | |
3036 | |
3037 | gfc_expr * |
3038 | gfc_simplify_float (gfc_expr *a) |
3039 | { |
3040 | gfc_expr *result; |
3041 | |
3042 | if (a->expr_type != EXPR_CONSTANT) |
3043 | return NULL__null; |
3044 | |
3045 | result = gfc_int2real (a, gfc_default_real_kind); |
3046 | |
3047 | return range_check (result, "FLOAT"); |
3048 | } |
3049 | |
3050 | |
3051 | static bool |
3052 | is_last_ref_vtab (gfc_expr *e) |
3053 | { |
3054 | gfc_ref *ref; |
3055 | gfc_component *comp = NULL__null; |
3056 | |
3057 | if (e->expr_type != EXPR_VARIABLE) |
3058 | return false; |
3059 | |
3060 | for (ref = e->ref; ref; ref = ref->next) |
3061 | if (ref->type == REF_COMPONENT) |
3062 | comp = ref->u.c.component; |
3063 | |
3064 | if (!e->ref || !comp) |
3065 | return e->symtree->n.sym->attr.vtab; |
3066 | |
3067 | if (comp->name[0] == '_' && strcmp (comp->name, "_vptr") == 0) |
3068 | return true; |
3069 | |
3070 | return false; |
3071 | } |
3072 | |
3073 | |
3074 | gfc_expr * |
3075 | gfc_simplify_extends_type_of (gfc_expr *a, gfc_expr *mold) |
3076 | { |
3077 | /* Avoid simplification of resolved symbols. */ |
3078 | if (is_last_ref_vtab (a) || is_last_ref_vtab (mold)) |
3079 | return NULL__null; |
3080 | |
3081 | if (a->ts.type == BT_DERIVED && mold->ts.type == BT_DERIVED) |
3082 | return gfc_get_logical_expr (gfc_default_logical_kind, &a->where, |
3083 | gfc_type_is_extension_of (mold->ts.u.derived, |
3084 | a->ts.u.derived)); |
3085 | |
3086 | if (UNLIMITED_POLY (a)(a != __null && a->ts.type == BT_CLASS && a ->ts.u.derived->components && a->ts.u.derived ->components->ts.u.derived && a->ts.u.derived ->components->ts.u.derived->attr.unlimited_polymorphic ) || UNLIMITED_POLY (mold)(mold != __null && mold->ts.type == BT_CLASS && mold->ts.u.derived->components && mold->ts. u.derived->components->ts.u.derived && mold-> ts.u.derived->components->ts.u.derived->attr.unlimited_polymorphic )) |
3087 | return NULL__null; |
3088 | |
3089 | /* Return .false. if the dynamic type can never be an extension. */ |
3090 | if ((a->ts.type == BT_CLASS && mold->ts.type == BT_CLASS |
3091 | && !gfc_type_is_extension_of |
3092 | (mold->ts.u.derived->components->ts.u.derived, |
3093 | a->ts.u.derived->components->ts.u.derived) |
3094 | && !gfc_type_is_extension_of |
3095 | (a->ts.u.derived->components->ts.u.derived, |
3096 | mold->ts.u.derived->components->ts.u.derived)) |
3097 | || (a->ts.type == BT_DERIVED && mold->ts.type == BT_CLASS |
3098 | && !gfc_type_is_extension_of |
3099 | (mold->ts.u.derived->components->ts.u.derived, |
3100 | a->ts.u.derived)) |
3101 | || (a->ts.type == BT_CLASS && mold->ts.type == BT_DERIVED |
3102 | && !gfc_type_is_extension_of |
3103 | (mold->ts.u.derived, |
3104 | a->ts.u.derived->components->ts.u.derived) |
3105 | && !gfc_type_is_extension_of |
3106 | (a->ts.u.derived->components->ts.u.derived, |
3107 | mold->ts.u.derived))) |
3108 | return gfc_get_logical_expr (gfc_default_logical_kind, &a->where, false); |
3109 | |
3110 | /* Return .true. if the dynamic type is guaranteed to be an extension. */ |
3111 | if (a->ts.type == BT_CLASS && mold->ts.type == BT_DERIVED |
3112 | && gfc_type_is_extension_of (mold->ts.u.derived, |
3113 | a->ts.u.derived->components->ts.u.derived)) |
3114 | return gfc_get_logical_expr (gfc_default_logical_kind, &a->where, true); |
3115 | |
3116 | return NULL__null; |
3117 | } |
3118 | |
3119 | |
3120 | gfc_expr * |
3121 | gfc_simplify_same_type_as (gfc_expr *a, gfc_expr *b) |
3122 | { |
3123 | /* Avoid simplification of resolved symbols. */ |
3124 | if (is_last_ref_vtab (a) || is_last_ref_vtab (b)) |
3125 | return NULL__null; |
3126 | |
3127 | /* Return .false. if the dynamic type can never be the |
3128 | same. */ |
3129 | if (((a->ts.type == BT_CLASS && gfc_expr_attr (a).class_ok) |
3130 | || (b->ts.type == BT_CLASS && gfc_expr_attr (b).class_ok)) |
3131 | && !gfc_type_compatible (&a->ts, &b->ts) |
3132 | && !gfc_type_compatible (&b->ts, &a->ts)) |
3133 | return gfc_get_logical_expr (gfc_default_logical_kind, &a->where, false); |
3134 | |
3135 | if (a->ts.type != BT_DERIVED || b->ts.type != BT_DERIVED) |
3136 | return NULL__null; |
3137 | |
3138 | return gfc_get_logical_expr (gfc_default_logical_kind, &a->where, |
3139 | gfc_compare_derived_types (a->ts.u.derived, |
3140 | b->ts.u.derived)); |
3141 | } |
3142 | |
3143 | |
3144 | gfc_expr * |
3145 | gfc_simplify_floor (gfc_expr *e, gfc_expr *k) |
3146 | { |
3147 | gfc_expr *result; |
3148 | mpfr_t floor; |
3149 | int kind; |
3150 | |
3151 | kind = get_kind (BT_INTEGER, k, "FLOOR", gfc_default_integer_kind); |
3152 | if (kind == -1) |
3153 | gfc_internal_error ("gfc_simplify_floor(): Bad kind"); |
3154 | |
3155 | if (e->expr_type != EXPR_CONSTANT) |
3156 | return NULL__null; |
3157 | |
3158 | mpfr_init2 (floor, mpfr_get_prec (e->value.real)(0 ? ((e->value.real)->_mpfr_prec) : ((e->value.real )->_mpfr_prec))); |
3159 | mpfr_floor (floor, e->value.real)mpfr_rint((floor), (e->value.real), MPFR_RNDD); |
3160 | |
3161 | result = gfc_get_constant_expr (BT_INTEGER, kind, &e->where); |
3162 | gfc_mpfr_to_mpz (result->value.integer, floor, &e->where); |
3163 | |
3164 | mpfr_clear (floor); |
3165 | |
3166 | return range_check (result, "FLOOR"); |
3167 | } |
3168 | |
3169 | |
3170 | gfc_expr * |
3171 | gfc_simplify_fraction (gfc_expr *x) |
3172 | { |
3173 | gfc_expr *result; |
3174 | mpfr_exp_t e; |
3175 | |
3176 | if (x->expr_type != EXPR_CONSTANT) |
3177 | return NULL__null; |
3178 | |
3179 | result = gfc_get_constant_expr (BT_REAL, x->ts.kind, &x->where); |
3180 | |
3181 | /* FRACTION(inf) = NaN. */ |
3182 | if (mpfr_inf_p (x->value.real)((x->value.real)->_mpfr_exp == (2 - ((mpfr_exp_t) (((mpfr_uexp_t ) -1) >> 1))))) |
3183 | { |
3184 | mpfr_set_nan (result->value.real); |
3185 | return result; |
3186 | } |
3187 | |
3188 | /* mpfr_frexp() correctly handles zeros and NaNs. */ |
3189 | mpfr_frexp (&e, result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
3190 | |
3191 | return range_check (result, "FRACTION"); |
3192 | } |
3193 | |
3194 | |
3195 | gfc_expr * |
3196 | gfc_simplify_gamma (gfc_expr *x) |
3197 | { |
3198 | gfc_expr *result; |
3199 | |
3200 | if (x->expr_type != EXPR_CONSTANT) |
3201 | return NULL__null; |
3202 | |
3203 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
3204 | mpfr_gamma (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
3205 | |
3206 | return range_check (result, "GAMMA"); |
3207 | } |
3208 | |
3209 | |
3210 | gfc_expr * |
3211 | gfc_simplify_huge (gfc_expr *e) |
3212 | { |
3213 | gfc_expr *result; |
3214 | int i; |
3215 | |
3216 | i = gfc_validate_kind (e->ts.type, e->ts.kind, false); |
3217 | result = gfc_get_constant_expr (e->ts.type, e->ts.kind, &e->where); |
3218 | |
3219 | switch (e->ts.type) |
3220 | { |
3221 | case BT_INTEGER: |
3222 | mpz_set__gmpz_set (result->value.integer, gfc_integer_kinds[i].huge); |
3223 | break; |
3224 | |
3225 | case BT_REAL: |
3226 | mpfr_set (result->value.real, gfc_real_kinds[i].huge, GFC_RND_MODE)mpfr_set4(result->value.real,gfc_real_kinds[i].huge,MPFR_RNDN ,((gfc_real_kinds[i].huge)->_mpfr_sign)); |
3227 | break; |
3228 | |
3229 | default: |
3230 | gcc_unreachable ()(fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 3230, __FUNCTION__)); |
3231 | } |
3232 | |
3233 | return result; |
3234 | } |
3235 | |
3236 | |
3237 | gfc_expr * |
3238 | gfc_simplify_hypot (gfc_expr *x, gfc_expr *y) |
3239 | { |
3240 | gfc_expr *result; |
3241 | |
3242 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) |
3243 | return NULL__null; |
3244 | |
3245 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
3246 | mpfr_hypot (result->value.real, x->value.real, y->value.real, GFC_RND_MODEMPFR_RNDN); |
3247 | return range_check (result, "HYPOT"); |
3248 | } |
3249 | |
3250 | |
3251 | /* We use the processor's collating sequence, because all |
3252 | systems that gfortran currently works on are ASCII. */ |
3253 | |
3254 | gfc_expr * |
3255 | gfc_simplify_iachar (gfc_expr *e, gfc_expr *kind) |
3256 | { |
3257 | gfc_expr *result; |
3258 | gfc_char_t index; |
3259 | int k; |
3260 | |
3261 | if (e->expr_type != EXPR_CONSTANT) |
3262 | return NULL__null; |
3263 | |
3264 | if (e->value.character.length != 1) |
3265 | { |
3266 | gfc_error ("Argument of IACHAR at %L must be of length one", &e->where); |
3267 | return &gfc_bad_expr; |
3268 | } |
3269 | |
3270 | index = e->value.character.string[0]; |
3271 | |
3272 | if (warn_surprisingglobal_options.x_warn_surprising && index > 127) |
3273 | gfc_warning (OPT_Wsurprising, |
3274 | "Argument of IACHAR function at %L outside of range 0..127", |
3275 | &e->where); |
3276 | |
3277 | k = get_kind (BT_INTEGER, kind, "IACHAR", gfc_default_integer_kind); |
3278 | if (k == -1) |
3279 | return &gfc_bad_expr; |
3280 | |
3281 | result = gfc_get_int_expr (k, &e->where, index); |
3282 | |
3283 | return range_check (result, "IACHAR"); |
3284 | } |
3285 | |
3286 | |
3287 | static gfc_expr * |
3288 | do_bit_and (gfc_expr *result, gfc_expr *e) |
3289 | { |
3290 | gcc_assert (e->ts.type == BT_INTEGER && e->expr_type == EXPR_CONSTANT)((void)(!(e->ts.type == BT_INTEGER && e->expr_type == EXPR_CONSTANT) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 3290, __FUNCTION__), 0 : 0)); |
3291 | gcc_assert (result->ts.type == BT_INTEGER((void)(!(result->ts.type == BT_INTEGER && result-> expr_type == EXPR_CONSTANT) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 3292, __FUNCTION__), 0 : 0)) |
3292 | && result->expr_type == EXPR_CONSTANT)((void)(!(result->ts.type == BT_INTEGER && result-> expr_type == EXPR_CONSTANT) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 3292, __FUNCTION__), 0 : 0)); |
3293 | |
3294 | mpz_and__gmpz_and (result->value.integer, result->value.integer, e->value.integer); |
3295 | return result; |
3296 | } |
3297 | |
3298 | |
3299 | gfc_expr * |
3300 | gfc_simplify_iall (gfc_expr *array, gfc_expr *dim, gfc_expr *mask) |
3301 | { |
3302 | return simplify_transformation (array, dim, mask, -1, do_bit_and); |
3303 | } |
3304 | |
3305 | |
3306 | static gfc_expr * |
3307 | do_bit_ior (gfc_expr *result, gfc_expr *e) |
3308 | { |
3309 | gcc_assert (e->ts.type == BT_INTEGER && e->expr_type == EXPR_CONSTANT)((void)(!(e->ts.type == BT_INTEGER && e->expr_type == EXPR_CONSTANT) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 3309, __FUNCTION__), 0 : 0)); |
3310 | gcc_assert (result->ts.type == BT_INTEGER((void)(!(result->ts.type == BT_INTEGER && result-> expr_type == EXPR_CONSTANT) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 3311, __FUNCTION__), 0 : 0)) |
3311 | && result->expr_type == EXPR_CONSTANT)((void)(!(result->ts.type == BT_INTEGER && result-> expr_type == EXPR_CONSTANT) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 3311, __FUNCTION__), 0 : 0)); |
3312 | |
3313 | mpz_ior__gmpz_ior (result->value.integer, result->value.integer, e->value.integer); |
3314 | return result; |
3315 | } |
3316 | |
3317 | |
3318 | gfc_expr * |
3319 | gfc_simplify_iany (gfc_expr *array, gfc_expr *dim, gfc_expr *mask) |
3320 | { |
3321 | return simplify_transformation (array, dim, mask, 0, do_bit_ior); |
3322 | } |
3323 | |
3324 | |
3325 | gfc_expr * |
3326 | gfc_simplify_iand (gfc_expr *x, gfc_expr *y) |
3327 | { |
3328 | gfc_expr *result; |
3329 | |
3330 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) |
3331 | return NULL__null; |
3332 | |
3333 | result = gfc_get_constant_expr (BT_INTEGER, x->ts.kind, &x->where); |
3334 | mpz_and__gmpz_and (result->value.integer, x->value.integer, y->value.integer); |
3335 | |
3336 | return range_check (result, "IAND"); |
3337 | } |
3338 | |
3339 | |
3340 | gfc_expr * |
3341 | gfc_simplify_ibclr (gfc_expr *x, gfc_expr *y) |
3342 | { |
3343 | gfc_expr *result; |
3344 | int k, pos; |
3345 | |
3346 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) |
3347 | return NULL__null; |
3348 | |
3349 | gfc_extract_int (y, &pos); |
3350 | |
3351 | k = gfc_validate_kind (x->ts.type, x->ts.kind, false); |
3352 | |
3353 | result = gfc_copy_expr (x); |
3354 | |
3355 | convert_mpz_to_unsigned (result->value.integer, |
3356 | gfc_integer_kinds[k].bit_size); |
3357 | |
3358 | mpz_clrbit__gmpz_clrbit (result->value.integer, pos); |
3359 | |
3360 | gfc_convert_mpz_to_signed (result->value.integer, |
3361 | gfc_integer_kinds[k].bit_size); |
3362 | |
3363 | return result; |
3364 | } |
3365 | |
3366 | |
3367 | gfc_expr * |
3368 | gfc_simplify_ibits (gfc_expr *x, gfc_expr *y, gfc_expr *z) |
3369 | { |
3370 | gfc_expr *result; |
3371 | int pos, len; |
3372 | int i, k, bitsize; |
3373 | int *bits; |
3374 | |
3375 | if (x->expr_type != EXPR_CONSTANT |
3376 | || y->expr_type != EXPR_CONSTANT |
3377 | || z->expr_type != EXPR_CONSTANT) |
3378 | return NULL__null; |
3379 | |
3380 | gfc_extract_int (y, &pos); |
3381 | gfc_extract_int (z, &len); |
3382 | |
3383 | k = gfc_validate_kind (BT_INTEGER, x->ts.kind, false); |
3384 | |
3385 | bitsize = gfc_integer_kinds[k].bit_size; |
3386 | |
3387 | if (pos + len > bitsize) |
3388 | { |
3389 | gfc_error ("Sum of second and third arguments of IBITS exceeds " |
3390 | "bit size at %L", &y->where); |
3391 | return &gfc_bad_expr; |
3392 | } |
3393 | |
3394 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
3395 | convert_mpz_to_unsigned (result->value.integer, |
3396 | gfc_integer_kinds[k].bit_size); |
3397 | |
3398 | bits = XCNEWVEC (int, bitsize)((int *) xcalloc ((bitsize), sizeof (int))); |
3399 | |
3400 | for (i = 0; i < bitsize; i++) |
3401 | bits[i] = 0; |
3402 | |
3403 | for (i = 0; i < len; i++) |
3404 | bits[i] = mpz_tstbit__gmpz_tstbit (x->value.integer, i + pos); |
3405 | |
3406 | for (i = 0; i < bitsize; i++) |
3407 | { |
3408 | if (bits[i] == 0) |
3409 | mpz_clrbit__gmpz_clrbit (result->value.integer, i); |
3410 | else if (bits[i] == 1) |
3411 | mpz_setbit__gmpz_setbit (result->value.integer, i); |
3412 | else |
3413 | gfc_internal_error ("IBITS: Bad bit"); |
3414 | } |
3415 | |
3416 | free (bits); |
3417 | |
3418 | gfc_convert_mpz_to_signed (result->value.integer, |
3419 | gfc_integer_kinds[k].bit_size); |
3420 | |
3421 | return result; |
3422 | } |
3423 | |
3424 | |
3425 | gfc_expr * |
3426 | gfc_simplify_ibset (gfc_expr *x, gfc_expr *y) |
3427 | { |
3428 | gfc_expr *result; |
3429 | int k, pos; |
3430 | |
3431 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) |
3432 | return NULL__null; |
3433 | |
3434 | gfc_extract_int (y, &pos); |
3435 | |
3436 | k = gfc_validate_kind (x->ts.type, x->ts.kind, false); |
3437 | |
3438 | result = gfc_copy_expr (x); |
3439 | |
3440 | convert_mpz_to_unsigned (result->value.integer, |
3441 | gfc_integer_kinds[k].bit_size); |
3442 | |
3443 | mpz_setbit__gmpz_setbit (result->value.integer, pos); |
3444 | |
3445 | gfc_convert_mpz_to_signed (result->value.integer, |
3446 | gfc_integer_kinds[k].bit_size); |
3447 | |
3448 | return result; |
3449 | } |
3450 | |
3451 | |
3452 | gfc_expr * |
3453 | gfc_simplify_ichar (gfc_expr *e, gfc_expr *kind) |
3454 | { |
3455 | gfc_expr *result; |
3456 | gfc_char_t index; |
3457 | int k; |
3458 | |
3459 | if (e->expr_type != EXPR_CONSTANT) |
3460 | return NULL__null; |
3461 | |
3462 | if (e->value.character.length != 1) |
3463 | { |
3464 | gfc_error ("Argument of ICHAR at %L must be of length one", &e->where); |
3465 | return &gfc_bad_expr; |
3466 | } |
3467 | |
3468 | index = e->value.character.string[0]; |
3469 | |
3470 | k = get_kind (BT_INTEGER, kind, "ICHAR", gfc_default_integer_kind); |
3471 | if (k == -1) |
3472 | return &gfc_bad_expr; |
3473 | |
3474 | result = gfc_get_int_expr (k, &e->where, index); |
3475 | |
3476 | return range_check (result, "ICHAR"); |
3477 | } |
3478 | |
3479 | |
3480 | gfc_expr * |
3481 | gfc_simplify_ieor (gfc_expr *x, gfc_expr *y) |
3482 | { |
3483 | gfc_expr *result; |
3484 | |
3485 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) |
3486 | return NULL__null; |
3487 | |
3488 | result = gfc_get_constant_expr (BT_INTEGER, x->ts.kind, &x->where); |
3489 | mpz_xor__gmpz_xor (result->value.integer, x->value.integer, y->value.integer); |
3490 | |
3491 | return range_check (result, "IEOR"); |
3492 | } |
3493 | |
3494 | |
3495 | gfc_expr * |
3496 | gfc_simplify_index (gfc_expr *x, gfc_expr *y, gfc_expr *b, gfc_expr *kind) |
3497 | { |
3498 | gfc_expr *result; |
3499 | int back, len, lensub; |
3500 | int i, j, k, count, index = 0, start; |
3501 | |
3502 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT |
3503 | || ( b != NULL__null && b->expr_type != EXPR_CONSTANT)) |
3504 | return NULL__null; |
3505 | |
3506 | if (b != NULL__null && b->value.logical != 0) |
3507 | back = 1; |
3508 | else |
3509 | back = 0; |
3510 | |
3511 | k = get_kind (BT_INTEGER, kind, "INDEX", gfc_default_integer_kind); |
3512 | if (k == -1) |
3513 | return &gfc_bad_expr; |
3514 | |
3515 | result = gfc_get_constant_expr (BT_INTEGER, k, &x->where); |
3516 | |
3517 | len = x->value.character.length; |
3518 | lensub = y->value.character.length; |
3519 | |
3520 | if (len < lensub) |
3521 | { |
3522 | mpz_set_si__gmpz_set_si (result->value.integer, 0); |
3523 | return result; |
3524 | } |
3525 | |
3526 | if (back == 0) |
3527 | { |
3528 | if (lensub == 0) |
3529 | { |
3530 | mpz_set_si__gmpz_set_si (result->value.integer, 1); |
3531 | return result; |
3532 | } |
3533 | else if (lensub == 1) |
3534 | { |
3535 | for (i = 0; i < len; i++) |
3536 | { |
3537 | for (j = 0; j < lensub; j++) |
3538 | { |
3539 | if (y->value.character.string[j] |
3540 | == x->value.character.string[i]) |
3541 | { |
3542 | index = i + 1; |
3543 | goto done; |
3544 | } |
3545 | } |
3546 | } |
3547 | } |
3548 | else |
3549 | { |
3550 | for (i = 0; i < len; i++) |
3551 | { |
3552 | for (j = 0; j < lensub; j++) |
3553 | { |
3554 | if (y->value.character.string[j] |
3555 | == x->value.character.string[i]) |
3556 | { |
3557 | start = i; |
3558 | count = 0; |
3559 | |
3560 | for (k = 0; k < lensub; k++) |
3561 | { |
3562 | if (y->value.character.string[k] |
3563 | == x->value.character.string[k + start]) |
3564 | count++; |
3565 | } |
3566 | |
3567 | if (count == lensub) |
3568 | { |
3569 | index = start + 1; |
3570 | goto done; |
3571 | } |
3572 | } |
3573 | } |
3574 | } |
3575 | } |
3576 | |
3577 | } |
3578 | else |
3579 | { |
3580 | if (lensub == 0) |
3581 | { |
3582 | mpz_set_si__gmpz_set_si (result->value.integer, len + 1); |
3583 | return result; |
3584 | } |
3585 | else if (lensub == 1) |
3586 | { |
3587 | for (i = 0; i < len; i++) |
3588 | { |
3589 | for (j = 0; j < lensub; j++) |
3590 | { |
3591 | if (y->value.character.string[j] |
3592 | == x->value.character.string[len - i]) |
3593 | { |
3594 | index = len - i + 1; |
3595 | goto done; |
3596 | } |
3597 | } |
3598 | } |
3599 | } |
3600 | else |
3601 | { |
3602 | for (i = 0; i < len; i++) |
3603 | { |
3604 | for (j = 0; j < lensub; j++) |
3605 | { |
3606 | if (y->value.character.string[j] |
3607 | == x->value.character.string[len - i]) |
3608 | { |
3609 | start = len - i; |
3610 | if (start <= len - lensub) |
3611 | { |
3612 | count = 0; |
3613 | for (k = 0; k < lensub; k++) |
3614 | if (y->value.character.string[k] |
3615 | == x->value.character.string[k + start]) |
3616 | count++; |
3617 | |
3618 | if (count == lensub) |
3619 | { |
3620 | index = start + 1; |
3621 | goto done; |
3622 | } |
3623 | } |
3624 | else |
3625 | { |
3626 | continue; |
3627 | } |
3628 | } |
3629 | } |
3630 | } |
3631 | } |
3632 | } |
3633 | |
3634 | done: |
3635 | mpz_set_si__gmpz_set_si (result->value.integer, index); |
3636 | return range_check (result, "INDEX"); |
3637 | } |
3638 | |
3639 | |
3640 | static gfc_expr * |
3641 | simplify_intconv (gfc_expr *e, int kind, const char *name) |
3642 | { |
3643 | gfc_expr *result = NULL__null; |
3644 | int tmp1, tmp2; |
3645 | |
3646 | /* Convert BOZ to integer, and return without range checking. */ |
3647 | if (e->ts.type == BT_BOZ) |
3648 | { |
3649 | if (!gfc_boz2int (e, kind)) |
3650 | return NULL__null; |
3651 | result = gfc_copy_expr (e); |
3652 | return result; |
3653 | } |
3654 | |
3655 | if (e->expr_type != EXPR_CONSTANT) |
3656 | return NULL__null; |
3657 | |
3658 | /* For explicit conversion, turn off -Wconversion and -Wconversion-extra |
3659 | warnings. */ |
3660 | tmp1 = warn_conversionglobal_options.x_warn_conversion; |
3661 | tmp2 = warn_conversion_extraglobal_options.x_warn_conversion_extra; |
3662 | warn_conversionglobal_options.x_warn_conversion = warn_conversion_extraglobal_options.x_warn_conversion_extra = 0; |
3663 | |
3664 | result = gfc_convert_constant (e, BT_INTEGER, kind); |
3665 | |
3666 | warn_conversionglobal_options.x_warn_conversion = tmp1; |
3667 | warn_conversion_extraglobal_options.x_warn_conversion_extra = tmp2; |
3668 | |
3669 | if (result == &gfc_bad_expr) |
3670 | return &gfc_bad_expr; |
3671 | |
3672 | return range_check (result, name); |
3673 | } |
3674 | |
3675 | |
3676 | gfc_expr * |
3677 | gfc_simplify_int (gfc_expr *e, gfc_expr *k) |
3678 | { |
3679 | int kind; |
3680 | |
3681 | kind = get_kind (BT_INTEGER, k, "INT", gfc_default_integer_kind); |
3682 | if (kind == -1) |
3683 | return &gfc_bad_expr; |
3684 | |
3685 | return simplify_intconv (e, kind, "INT"); |
3686 | } |
3687 | |
3688 | gfc_expr * |
3689 | gfc_simplify_int2 (gfc_expr *e) |
3690 | { |
3691 | return simplify_intconv (e, 2, "INT2"); |
3692 | } |
3693 | |
3694 | |
3695 | gfc_expr * |
3696 | gfc_simplify_int8 (gfc_expr *e) |
3697 | { |
3698 | return simplify_intconv (e, 8, "INT8"); |
3699 | } |
3700 | |
3701 | |
3702 | gfc_expr * |
3703 | gfc_simplify_long (gfc_expr *e) |
3704 | { |
3705 | return simplify_intconv (e, 4, "LONG"); |
3706 | } |
3707 | |
3708 | |
3709 | gfc_expr * |
3710 | gfc_simplify_ifix (gfc_expr *e) |
3711 | { |
3712 | gfc_expr *rtrunc, *result; |
3713 | |
3714 | if (e->expr_type != EXPR_CONSTANT) |
3715 | return NULL__null; |
3716 | |
3717 | rtrunc = gfc_copy_expr (e); |
3718 | mpfr_trunc (rtrunc->value.real, e->value.real)mpfr_rint((rtrunc->value.real), (e->value.real), MPFR_RNDZ ); |
3719 | |
3720 | result = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind, |
3721 | &e->where); |
3722 | gfc_mpfr_to_mpz (result->value.integer, rtrunc->value.real, &e->where); |
3723 | |
3724 | gfc_free_expr (rtrunc); |
3725 | |
3726 | return range_check (result, "IFIX"); |
3727 | } |
3728 | |
3729 | |
3730 | gfc_expr * |
3731 | gfc_simplify_idint (gfc_expr *e) |
3732 | { |
3733 | gfc_expr *rtrunc, *result; |
3734 | |
3735 | if (e->expr_type != EXPR_CONSTANT) |
3736 | return NULL__null; |
3737 | |
3738 | rtrunc = gfc_copy_expr (e); |
3739 | mpfr_trunc (rtrunc->value.real, e->value.real)mpfr_rint((rtrunc->value.real), (e->value.real), MPFR_RNDZ ); |
3740 | |
3741 | result = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind, |
3742 | &e->where); |
3743 | gfc_mpfr_to_mpz (result->value.integer, rtrunc->value.real, &e->where); |
3744 | |
3745 | gfc_free_expr (rtrunc); |
3746 | |
3747 | return range_check (result, "IDINT"); |
3748 | } |
3749 | |
3750 | |
3751 | gfc_expr * |
3752 | gfc_simplify_ior (gfc_expr *x, gfc_expr *y) |
3753 | { |
3754 | gfc_expr *result; |
3755 | |
3756 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) |
3757 | return NULL__null; |
3758 | |
3759 | result = gfc_get_constant_expr (BT_INTEGER, x->ts.kind, &x->where); |
3760 | mpz_ior__gmpz_ior (result->value.integer, x->value.integer, y->value.integer); |
3761 | |
3762 | return range_check (result, "IOR"); |
3763 | } |
3764 | |
3765 | |
3766 | static gfc_expr * |
3767 | do_bit_xor (gfc_expr *result, gfc_expr *e) |
3768 | { |
3769 | gcc_assert (e->ts.type == BT_INTEGER && e->expr_type == EXPR_CONSTANT)((void)(!(e->ts.type == BT_INTEGER && e->expr_type == EXPR_CONSTANT) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 3769, __FUNCTION__), 0 : 0)); |
3770 | gcc_assert (result->ts.type == BT_INTEGER((void)(!(result->ts.type == BT_INTEGER && result-> expr_type == EXPR_CONSTANT) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 3771, __FUNCTION__), 0 : 0)) |
3771 | && result->expr_type == EXPR_CONSTANT)((void)(!(result->ts.type == BT_INTEGER && result-> expr_type == EXPR_CONSTANT) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 3771, __FUNCTION__), 0 : 0)); |
3772 | |
3773 | mpz_xor__gmpz_xor (result->value.integer, result->value.integer, e->value.integer); |
3774 | return result; |
3775 | } |
3776 | |
3777 | |
3778 | gfc_expr * |
3779 | gfc_simplify_iparity (gfc_expr *array, gfc_expr *dim, gfc_expr *mask) |
3780 | { |
3781 | return simplify_transformation (array, dim, mask, 0, do_bit_xor); |
3782 | } |
3783 | |
3784 | |
3785 | gfc_expr * |
3786 | gfc_simplify_is_iostat_end (gfc_expr *x) |
3787 | { |
3788 | if (x->expr_type != EXPR_CONSTANT) |
3789 | return NULL__null; |
3790 | |
3791 | return gfc_get_logical_expr (gfc_default_logical_kind, &x->where, |
3792 | mpz_cmp_si (x->value.integer,(__builtin_constant_p ((LIBERROR_END) >= 0) && (LIBERROR_END ) >= 0 ? (__builtin_constant_p ((static_cast<unsigned long > (LIBERROR_END))) && ((static_cast<unsigned long > (LIBERROR_END))) == 0 ? ((x->value.integer)->_mp_size < 0 ? -1 : (x->value.integer)->_mp_size > 0) : __gmpz_cmp_ui (x->value.integer,(static_cast<unsigned long> (LIBERROR_END )))) : __gmpz_cmp_si (x->value.integer,LIBERROR_END)) |
3793 | LIBERROR_END)(__builtin_constant_p ((LIBERROR_END) >= 0) && (LIBERROR_END ) >= 0 ? (__builtin_constant_p ((static_cast<unsigned long > (LIBERROR_END))) && ((static_cast<unsigned long > (LIBERROR_END))) == 0 ? ((x->value.integer)->_mp_size < 0 ? -1 : (x->value.integer)->_mp_size > 0) : __gmpz_cmp_ui (x->value.integer,(static_cast<unsigned long> (LIBERROR_END )))) : __gmpz_cmp_si (x->value.integer,LIBERROR_END)) == 0); |
3794 | } |
3795 | |
3796 | |
3797 | gfc_expr * |
3798 | gfc_simplify_is_iostat_eor (gfc_expr *x) |
3799 | { |
3800 | if (x->expr_type != EXPR_CONSTANT) |
3801 | return NULL__null; |
3802 | |
3803 | return gfc_get_logical_expr (gfc_default_logical_kind, &x->where, |
3804 | mpz_cmp_si (x->value.integer,(__builtin_constant_p ((LIBERROR_EOR) >= 0) && (LIBERROR_EOR ) >= 0 ? (__builtin_constant_p ((static_cast<unsigned long > (LIBERROR_EOR))) && ((static_cast<unsigned long > (LIBERROR_EOR))) == 0 ? ((x->value.integer)->_mp_size < 0 ? -1 : (x->value.integer)->_mp_size > 0) : __gmpz_cmp_ui (x->value.integer,(static_cast<unsigned long> (LIBERROR_EOR )))) : __gmpz_cmp_si (x->value.integer,LIBERROR_EOR)) |
3805 | LIBERROR_EOR)(__builtin_constant_p ((LIBERROR_EOR) >= 0) && (LIBERROR_EOR ) >= 0 ? (__builtin_constant_p ((static_cast<unsigned long > (LIBERROR_EOR))) && ((static_cast<unsigned long > (LIBERROR_EOR))) == 0 ? ((x->value.integer)->_mp_size < 0 ? -1 : (x->value.integer)->_mp_size > 0) : __gmpz_cmp_ui (x->value.integer,(static_cast<unsigned long> (LIBERROR_EOR )))) : __gmpz_cmp_si (x->value.integer,LIBERROR_EOR)) == 0); |
3806 | } |
3807 | |
3808 | |
3809 | gfc_expr * |
3810 | gfc_simplify_isnan (gfc_expr *x) |
3811 | { |
3812 | if (x->expr_type != EXPR_CONSTANT) |
3813 | return NULL__null; |
3814 | |
3815 | return gfc_get_logical_expr (gfc_default_logical_kind, &x->where, |
3816 | mpfr_nan_p (x->value.real)((x->value.real)->_mpfr_exp == (1 - ((mpfr_exp_t) (((mpfr_uexp_t ) -1) >> 1))))); |
3817 | } |
3818 | |
3819 | |
3820 | /* Performs a shift on its first argument. Depending on the last |
3821 | argument, the shift can be arithmetic, i.e. with filling from the |
3822 | left like in the SHIFTA intrinsic. */ |
3823 | static gfc_expr * |
3824 | simplify_shift (gfc_expr *e, gfc_expr *s, const char *name, |
3825 | bool arithmetic, int direction) |
3826 | { |
3827 | gfc_expr *result; |
3828 | int ashift, *bits, i, k, bitsize, shift; |
3829 | |
3830 | if (e->expr_type != EXPR_CONSTANT || s->expr_type != EXPR_CONSTANT) |
3831 | return NULL__null; |
3832 | |
3833 | gfc_extract_int (s, &shift); |
3834 | |
3835 | k = gfc_validate_kind (BT_INTEGER, e->ts.kind, false); |
3836 | bitsize = gfc_integer_kinds[k].bit_size; |
3837 | |
3838 | result = gfc_get_constant_expr (e->ts.type, e->ts.kind, &e->where); |
3839 | |
3840 | if (shift == 0) |
3841 | { |
3842 | mpz_set__gmpz_set (result->value.integer, e->value.integer); |
3843 | return result; |
3844 | } |
3845 | |
3846 | if (direction > 0 && shift < 0) |
3847 | { |
3848 | /* Left shift, as in SHIFTL. */ |
3849 | gfc_error ("Second argument of %s is negative at %L", name, &e->where); |
3850 | return &gfc_bad_expr; |
3851 | } |
3852 | else if (direction < 0) |
3853 | { |
3854 | /* Right shift, as in SHIFTR or SHIFTA. */ |
3855 | if (shift < 0) |
3856 | { |
3857 | gfc_error ("Second argument of %s is negative at %L", |
3858 | name, &e->where); |
3859 | return &gfc_bad_expr; |
3860 | } |
3861 | |
3862 | shift = -shift; |
3863 | } |
3864 | |
3865 | ashift = (shift >= 0 ? shift : -shift); |
3866 | |
3867 | if (ashift > bitsize) |
3868 | { |
3869 | gfc_error ("Magnitude of second argument of %s exceeds bit size " |
3870 | "at %L", name, &e->where); |
3871 | return &gfc_bad_expr; |
3872 | } |
3873 | |
3874 | bits = XCNEWVEC (int, bitsize)((int *) xcalloc ((bitsize), sizeof (int))); |
3875 | |
3876 | for (i = 0; i < bitsize; i++) |
3877 | bits[i] = mpz_tstbit__gmpz_tstbit (e->value.integer, i); |
3878 | |
3879 | if (shift > 0) |
3880 | { |
3881 | /* Left shift. */ |
3882 | for (i = 0; i < shift; i++) |
3883 | mpz_clrbit__gmpz_clrbit (result->value.integer, i); |
3884 | |
3885 | for (i = 0; i < bitsize - shift; i++) |
3886 | { |
3887 | if (bits[i] == 0) |
3888 | mpz_clrbit__gmpz_clrbit (result->value.integer, i + shift); |
3889 | else |
3890 | mpz_setbit__gmpz_setbit (result->value.integer, i + shift); |
3891 | } |
3892 | } |
3893 | else |
3894 | { |
3895 | /* Right shift. */ |
3896 | if (arithmetic && bits[bitsize - 1]) |
3897 | for (i = bitsize - 1; i >= bitsize - ashift; i--) |
3898 | mpz_setbit__gmpz_setbit (result->value.integer, i); |
3899 | else |
3900 | for (i = bitsize - 1; i >= bitsize - ashift; i--) |
3901 | mpz_clrbit__gmpz_clrbit (result->value.integer, i); |
3902 | |
3903 | for (i = bitsize - 1; i >= ashift; i--) |
3904 | { |
3905 | if (bits[i] == 0) |
3906 | mpz_clrbit__gmpz_clrbit (result->value.integer, i - ashift); |
3907 | else |
3908 | mpz_setbit__gmpz_setbit (result->value.integer, i - ashift); |
3909 | } |
3910 | } |
3911 | |
3912 | gfc_convert_mpz_to_signed (result->value.integer, bitsize); |
3913 | free (bits); |
3914 | |
3915 | return result; |
3916 | } |
3917 | |
3918 | |
3919 | gfc_expr * |
3920 | gfc_simplify_ishft (gfc_expr *e, gfc_expr *s) |
3921 | { |
3922 | return simplify_shift (e, s, "ISHFT", false, 0); |
3923 | } |
3924 | |
3925 | |
3926 | gfc_expr * |
3927 | gfc_simplify_lshift (gfc_expr *e, gfc_expr *s) |
3928 | { |
3929 | return simplify_shift (e, s, "LSHIFT", false, 1); |
3930 | } |
3931 | |
3932 | |
3933 | gfc_expr * |
3934 | gfc_simplify_rshift (gfc_expr *e, gfc_expr *s) |
3935 | { |
3936 | return simplify_shift (e, s, "RSHIFT", true, -1); |
3937 | } |
3938 | |
3939 | |
3940 | gfc_expr * |
3941 | gfc_simplify_shifta (gfc_expr *e, gfc_expr *s) |
3942 | { |
3943 | return simplify_shift (e, s, "SHIFTA", true, -1); |
3944 | } |
3945 | |
3946 | |
3947 | gfc_expr * |
3948 | gfc_simplify_shiftl (gfc_expr *e, gfc_expr *s) |
3949 | { |
3950 | return simplify_shift (e, s, "SHIFTL", false, 1); |
3951 | } |
3952 | |
3953 | |
3954 | gfc_expr * |
3955 | gfc_simplify_shiftr (gfc_expr *e, gfc_expr *s) |
3956 | { |
3957 | return simplify_shift (e, s, "SHIFTR", false, -1); |
3958 | } |
3959 | |
3960 | |
3961 | gfc_expr * |
3962 | gfc_simplify_ishftc (gfc_expr *e, gfc_expr *s, gfc_expr *sz) |
3963 | { |
3964 | gfc_expr *result; |
3965 | int shift, ashift, isize, ssize, delta, k; |
3966 | int i, *bits; |
3967 | |
3968 | if (e->expr_type != EXPR_CONSTANT || s->expr_type != EXPR_CONSTANT) |
3969 | return NULL__null; |
3970 | |
3971 | gfc_extract_int (s, &shift); |
3972 | |
3973 | k = gfc_validate_kind (e->ts.type, e->ts.kind, false); |
3974 | isize = gfc_integer_kinds[k].bit_size; |
3975 | |
3976 | if (sz != NULL__null) |
3977 | { |
3978 | if (sz->expr_type != EXPR_CONSTANT) |
3979 | return NULL__null; |
3980 | |
3981 | gfc_extract_int (sz, &ssize); |
3982 | } |
3983 | else |
3984 | ssize = isize; |
3985 | |
3986 | if (shift >= 0) |
3987 | ashift = shift; |
3988 | else |
3989 | ashift = -shift; |
3990 | |
3991 | if (ashift > ssize) |
3992 | { |
3993 | if (sz == NULL__null) |
3994 | gfc_error ("Magnitude of second argument of ISHFTC exceeds " |
3995 | "BIT_SIZE of first argument at %C"); |
3996 | else |
3997 | gfc_error ("Absolute value of SHIFT shall be less than or equal " |
3998 | "to SIZE at %C"); |
3999 | return &gfc_bad_expr; |
4000 | } |
4001 | |
4002 | result = gfc_get_constant_expr (e->ts.type, e->ts.kind, &e->where); |
4003 | |
4004 | mpz_set__gmpz_set (result->value.integer, e->value.integer); |
4005 | |
4006 | if (shift == 0) |
4007 | return result; |
4008 | |
4009 | convert_mpz_to_unsigned (result->value.integer, isize); |
4010 | |
4011 | bits = XCNEWVEC (int, ssize)((int *) xcalloc ((ssize), sizeof (int))); |
4012 | |
4013 | for (i = 0; i < ssize; i++) |
4014 | bits[i] = mpz_tstbit__gmpz_tstbit (e->value.integer, i); |
4015 | |
4016 | delta = ssize - ashift; |
4017 | |
4018 | if (shift > 0) |
4019 | { |
4020 | for (i = 0; i < delta; i++) |
4021 | { |
4022 | if (bits[i] == 0) |
4023 | mpz_clrbit__gmpz_clrbit (result->value.integer, i + shift); |
4024 | else |
4025 | mpz_setbit__gmpz_setbit (result->value.integer, i + shift); |
4026 | } |
4027 | |
4028 | for (i = delta; i < ssize; i++) |
4029 | { |
4030 | if (bits[i] == 0) |
4031 | mpz_clrbit__gmpz_clrbit (result->value.integer, i - delta); |
4032 | else |
4033 | mpz_setbit__gmpz_setbit (result->value.integer, i - delta); |
4034 | } |
4035 | } |
4036 | else |
4037 | { |
4038 | for (i = 0; i < ashift; i++) |
4039 | { |
4040 | if (bits[i] == 0) |
4041 | mpz_clrbit__gmpz_clrbit (result->value.integer, i + delta); |
4042 | else |
4043 | mpz_setbit__gmpz_setbit (result->value.integer, i + delta); |
4044 | } |
4045 | |
4046 | for (i = ashift; i < ssize; i++) |
4047 | { |
4048 | if (bits[i] == 0) |
4049 | mpz_clrbit__gmpz_clrbit (result->value.integer, i + shift); |
4050 | else |
4051 | mpz_setbit__gmpz_setbit (result->value.integer, i + shift); |
4052 | } |
4053 | } |
4054 | |
4055 | gfc_convert_mpz_to_signed (result->value.integer, isize); |
4056 | |
4057 | free (bits); |
4058 | return result; |
4059 | } |
4060 | |
4061 | |
4062 | gfc_expr * |
4063 | gfc_simplify_kind (gfc_expr *e) |
4064 | { |
4065 | return gfc_get_int_expr (gfc_default_integer_kind, NULL__null, e->ts.kind); |
4066 | } |
4067 | |
4068 | |
4069 | static gfc_expr * |
4070 | simplify_bound_dim (gfc_expr *array, gfc_expr *kind, int d, int upper, |
4071 | gfc_array_spec *as, gfc_ref *ref, bool coarray) |
4072 | { |
4073 | gfc_expr *l, *u, *result; |
4074 | int k; |
4075 | |
4076 | k = get_kind (BT_INTEGER, kind, upper ? "UBOUND" : "LBOUND", |
4077 | gfc_default_integer_kind); |
4078 | if (k == -1) |
4079 | return &gfc_bad_expr; |
4080 | |
4081 | result = gfc_get_constant_expr (BT_INTEGER, k, &array->where); |
4082 | |
4083 | /* For non-variables, LBOUND(expr, DIM=n) = 1 and |
4084 | UBOUND(expr, DIM=n) = SIZE(expr, DIM=n). */ |
4085 | if (!coarray && array->expr_type != EXPR_VARIABLE) |
4086 | { |
4087 | if (upper) |
4088 | { |
4089 | gfc_expr* dim = result; |
4090 | mpz_set_si__gmpz_set_si (dim->value.integer, d); |
4091 | |
4092 | result = simplify_size (array, dim, k); |
4093 | gfc_free_expr (dim); |
4094 | if (!result) |
4095 | goto returnNull; |
4096 | } |
4097 | else |
4098 | mpz_set_si__gmpz_set_si (result->value.integer, 1); |
4099 | |
4100 | goto done; |
4101 | } |
4102 | |
4103 | /* Otherwise, we have a variable expression. */ |
4104 | gcc_assert (array->expr_type == EXPR_VARIABLE)((void)(!(array->expr_type == EXPR_VARIABLE) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 4104, __FUNCTION__), 0 : 0)); |
4105 | gcc_assert (as)((void)(!(as) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 4105, __FUNCTION__), 0 : 0)); |
4106 | |
4107 | if (!gfc_resolve_array_spec (as, 0)) |
4108 | return NULL__null; |
4109 | |
4110 | /* The last dimension of an assumed-size array is special. */ |
4111 | if ((!coarray && d == as->rank && as->type == AS_ASSUMED_SIZE && !upper) |
4112 | || (coarray && d == as->rank + as->corank |
4113 | && (!upper || flag_coarrayglobal_options.x_flag_coarray == GFC_FCOARRAY_SINGLE))) |
4114 | { |
4115 | if (as->lower[d-1] && as->lower[d-1]->expr_type == EXPR_CONSTANT) |
4116 | { |
4117 | gfc_free_expr (result); |
4118 | return gfc_copy_expr (as->lower[d-1]); |
4119 | } |
4120 | |
4121 | goto returnNull; |
4122 | } |
4123 | |
4124 | result = gfc_get_constant_expr (BT_INTEGER, k, &array->where); |
4125 | |
4126 | /* Then, we need to know the extent of the given dimension. */ |
4127 | if (coarray || (ref->u.ar.type == AR_FULL && !ref->next)) |
4128 | { |
4129 | gfc_expr *declared_bound; |
4130 | int empty_bound; |
4131 | bool constant_lbound, constant_ubound; |
4132 | |
4133 | l = as->lower[d-1]; |
4134 | u = as->upper[d-1]; |
4135 | |
4136 | gcc_assert (l != NULL)((void)(!(l != __null) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 4136, __FUNCTION__), 0 : 0)); |
4137 | |
4138 | constant_lbound = l->expr_type == EXPR_CONSTANT; |
4139 | constant_ubound = u && u->expr_type == EXPR_CONSTANT; |
4140 | |
4141 | empty_bound = upper ? 0 : 1; |
4142 | declared_bound = upper ? u : l; |
4143 | |
4144 | if ((!upper && !constant_lbound) |
4145 | || (upper && !constant_ubound)) |
4146 | goto returnNull; |
4147 | |
4148 | if (!coarray) |
4149 | { |
4150 | /* For {L,U}BOUND, the value depends on whether the array |
4151 | is empty. We can nevertheless simplify if the declared bound |
4152 | has the same value as that of an empty array, in which case |
4153 | the result isn't dependent on the array emptyness. */ |
4154 | if (mpz_cmp_si (declared_bound->value.integer, empty_bound)(__builtin_constant_p ((empty_bound) >= 0) && (empty_bound ) >= 0 ? (__builtin_constant_p ((static_cast<unsigned long > (empty_bound))) && ((static_cast<unsigned long > (empty_bound))) == 0 ? ((declared_bound->value.integer )->_mp_size < 0 ? -1 : (declared_bound->value.integer )->_mp_size > 0) : __gmpz_cmp_ui (declared_bound->value .integer,(static_cast<unsigned long> (empty_bound)))) : __gmpz_cmp_si (declared_bound->value.integer,empty_bound) ) == 0) |
4155 | mpz_set_si__gmpz_set_si (result->value.integer, empty_bound); |
4156 | else if (!constant_lbound || !constant_ubound) |
4157 | /* Array emptyness can't be determined, we can't simplify. */ |
4158 | goto returnNull; |
4159 | else if (mpz_cmp__gmpz_cmp (l->value.integer, u->value.integer) > 0) |
4160 | mpz_set_si__gmpz_set_si (result->value.integer, empty_bound); |
4161 | else |
4162 | mpz_set__gmpz_set (result->value.integer, declared_bound->value.integer); |
4163 | } |
4164 | else |
4165 | mpz_set__gmpz_set (result->value.integer, declared_bound->value.integer); |
4166 | } |
4167 | else |
4168 | { |
4169 | if (upper) |
4170 | { |
4171 | if (!gfc_ref_dimen_size (&ref->u.ar, d - 1, &result->value.integer, NULL__null)) |
4172 | goto returnNull; |
4173 | } |
4174 | else |
4175 | mpz_set_si__gmpz_set_si (result->value.integer, (long int) 1); |
4176 | } |
4177 | |
4178 | done: |
4179 | return range_check (result, upper ? "UBOUND" : "LBOUND"); |
4180 | |
4181 | returnNull: |
4182 | gfc_free_expr (result); |
4183 | return NULL__null; |
4184 | } |
4185 | |
4186 | |
4187 | static gfc_expr * |
4188 | simplify_bound (gfc_expr *array, gfc_expr *dim, gfc_expr *kind, int upper) |
4189 | { |
4190 | gfc_ref *ref; |
4191 | gfc_array_spec *as; |
4192 | ar_type type = AR_UNKNOWN; |
4193 | int d; |
4194 | |
4195 | if (array->ts.type == BT_CLASS) |
4196 | return NULL__null; |
4197 | |
4198 | if (array->expr_type != EXPR_VARIABLE) |
4199 | { |
4200 | as = NULL__null; |
4201 | ref = NULL__null; |
4202 | goto done; |
4203 | } |
4204 | |
4205 | /* Do not attempt to resolve if error has already been issued. */ |
4206 | if (array->symtree->n.sym->error) |
4207 | return NULL__null; |
4208 | |
4209 | /* Follow any component references. */ |
4210 | as = array->symtree->n.sym->as; |
4211 | for (ref = array->ref; ref; ref = ref->next) |
4212 | { |
4213 | switch (ref->type) |
4214 | { |
4215 | case REF_ARRAY: |
4216 | type = ref->u.ar.type; |
4217 | switch (ref->u.ar.type) |
4218 | { |
4219 | case AR_ELEMENT: |
4220 | as = NULL__null; |
4221 | continue; |
4222 | |
4223 | case AR_FULL: |
4224 | /* We're done because 'as' has already been set in the |
4225 | previous iteration. */ |
4226 | goto done; |
4227 | |
4228 | case AR_UNKNOWN: |
4229 | return NULL__null; |
4230 | |
4231 | case AR_SECTION: |
4232 | as = ref->u.ar.as; |
4233 | goto done; |
4234 | } |
4235 | |
4236 | gcc_unreachable ()(fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 4236, __FUNCTION__)); |
4237 | |
4238 | case REF_COMPONENT: |
4239 | as = ref->u.c.component->as; |
4240 | continue; |
4241 | |
4242 | case REF_SUBSTRING: |
4243 | case REF_INQUIRY: |
4244 | continue; |
4245 | } |
4246 | } |
4247 | |
4248 | gcc_unreachable ()(fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 4248, __FUNCTION__)); |
4249 | |
4250 | done: |
4251 | |
4252 | if (as && (as->type == AS_DEFERRED || as->type == AS_ASSUMED_RANK |
4253 | || (as->type == AS_ASSUMED_SHAPE && upper))) |
4254 | return NULL__null; |
4255 | |
4256 | gcc_assert (!as((void)(!(!as || (as->type != AS_DEFERRED && array ->expr_type == EXPR_VARIABLE && !gfc_expr_attr (array ).allocatable && !gfc_expr_attr (array).pointer)) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 4260, __FUNCTION__), 0 : 0)) |
4257 | || (as->type != AS_DEFERRED((void)(!(!as || (as->type != AS_DEFERRED && array ->expr_type == EXPR_VARIABLE && !gfc_expr_attr (array ).allocatable && !gfc_expr_attr (array).pointer)) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 4260, __FUNCTION__), 0 : 0)) |
4258 | && array->expr_type == EXPR_VARIABLE((void)(!(!as || (as->type != AS_DEFERRED && array ->expr_type == EXPR_VARIABLE && !gfc_expr_attr (array ).allocatable && !gfc_expr_attr (array).pointer)) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 4260, __FUNCTION__), 0 : 0)) |
4259 | && !gfc_expr_attr (array).allocatable((void)(!(!as || (as->type != AS_DEFERRED && array ->expr_type == EXPR_VARIABLE && !gfc_expr_attr (array ).allocatable && !gfc_expr_attr (array).pointer)) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 4260, __FUNCTION__), 0 : 0)) |
4260 | && !gfc_expr_attr (array).pointer))((void)(!(!as || (as->type != AS_DEFERRED && array ->expr_type == EXPR_VARIABLE && !gfc_expr_attr (array ).allocatable && !gfc_expr_attr (array).pointer)) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 4260, __FUNCTION__), 0 : 0)); |
4261 | |
4262 | if (dim == NULL__null) |
4263 | { |
4264 | /* Multi-dimensional bounds. */ |
4265 | gfc_expr *bounds[GFC_MAX_DIMENSIONS15]; |
4266 | gfc_expr *e; |
4267 | int k; |
4268 | |
4269 | /* UBOUND(ARRAY) is not valid for an assumed-size array. */ |
4270 | if (upper && type == AR_FULL && as && as->type == AS_ASSUMED_SIZE) |
4271 | { |
4272 | /* An error message will be emitted in |
4273 | check_assumed_size_reference (resolve.c). */ |
4274 | return &gfc_bad_expr; |
4275 | } |
4276 | |
4277 | /* Simplify the bounds for each dimension. */ |
4278 | for (d = 0; d < array->rank; d++) |
4279 | { |
4280 | bounds[d] = simplify_bound_dim (array, kind, d + 1, upper, as, ref, |
4281 | false); |
4282 | if (bounds[d] == NULL__null || bounds[d] == &gfc_bad_expr) |
4283 | { |
4284 | int j; |
4285 | |
4286 | for (j = 0; j < d; j++) |
4287 | gfc_free_expr (bounds[j]); |
4288 | |
4289 | if (gfc_seen_div0) |
4290 | return &gfc_bad_expr; |
4291 | else |
4292 | return bounds[d]; |
4293 | } |
4294 | } |
4295 | |
4296 | /* Allocate the result expression. */ |
4297 | k = get_kind (BT_INTEGER, kind, upper ? "UBOUND" : "LBOUND", |
4298 | gfc_default_integer_kind); |
4299 | if (k == -1) |
4300 | return &gfc_bad_expr; |
4301 | |
4302 | e = gfc_get_array_expr (BT_INTEGER, k, &array->where); |
4303 | |
4304 | /* The result is a rank 1 array; its size is the rank of the first |
4305 | argument to {L,U}BOUND. */ |
4306 | e->rank = 1; |
4307 | e->shape = gfc_get_shape (1)(((mpz_t *) xcalloc (((1)), sizeof (mpz_t)))); |
4308 | mpz_init_set_ui__gmpz_init_set_ui (e->shape[0], array->rank); |
4309 | |
4310 | /* Create the constructor for this array. */ |
4311 | for (d = 0; d < array->rank; d++) |
4312 | gfc_constructor_append_expr (&e->value.constructor, |
4313 | bounds[d], &e->where); |
4314 | |
4315 | return e; |
4316 | } |
4317 | else |
4318 | { |
4319 | /* A DIM argument is specified. */ |
4320 | if (dim->expr_type != EXPR_CONSTANT) |
4321 | return NULL__null; |
4322 | |
4323 | d = mpz_get_si__gmpz_get_si (dim->value.integer); |
4324 | |
4325 | if ((d < 1 || d > array->rank) |
4326 | || (d == array->rank && as && as->type == AS_ASSUMED_SIZE && upper)) |
4327 | { |
4328 | gfc_error ("DIM argument at %L is out of bounds", &dim->where); |
4329 | return &gfc_bad_expr; |
4330 | } |
4331 | |
4332 | if (as && as->type == AS_ASSUMED_RANK) |
4333 | return NULL__null; |
4334 | |
4335 | return simplify_bound_dim (array, kind, d, upper, as, ref, false); |
4336 | } |
4337 | } |
4338 | |
4339 | |
4340 | static gfc_expr * |
4341 | simplify_cobound (gfc_expr *array, gfc_expr *dim, gfc_expr *kind, int upper) |
4342 | { |
4343 | gfc_ref *ref; |
4344 | gfc_array_spec *as; |
4345 | int d; |
4346 | |
4347 | if (array->expr_type != EXPR_VARIABLE) |
4348 | return NULL__null; |
4349 | |
4350 | /* Follow any component references. */ |
4351 | as = (array->ts.type == BT_CLASS && array->ts.u.derived->components) |
4352 | ? array->ts.u.derived->components->as |
4353 | : array->symtree->n.sym->as; |
4354 | for (ref = array->ref; ref; ref = ref->next) |
4355 | { |
4356 | switch (ref->type) |
4357 | { |
4358 | case REF_ARRAY: |
4359 | switch (ref->u.ar.type) |
4360 | { |
4361 | case AR_ELEMENT: |
4362 | if (ref->u.ar.as->corank > 0) |
4363 | { |
4364 | gcc_assert (as == ref->u.ar.as)((void)(!(as == ref->u.ar.as) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 4364, __FUNCTION__), 0 : 0)); |
4365 | goto done; |
4366 | } |
4367 | as = NULL__null; |
4368 | continue; |
4369 | |
4370 | case AR_FULL: |
4371 | /* We're done because 'as' has already been set in the |
4372 | previous iteration. */ |
4373 | goto done; |
4374 | |
4375 | case AR_UNKNOWN: |
4376 | return NULL__null; |
4377 | |
4378 | case AR_SECTION: |
4379 | as = ref->u.ar.as; |
4380 | goto done; |
4381 | } |
4382 | |
4383 | gcc_unreachable ()(fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 4383, __FUNCTION__)); |
4384 | |
4385 | case REF_COMPONENT: |
4386 | as = ref->u.c.component->as; |
4387 | continue; |
4388 | |
4389 | case REF_SUBSTRING: |
4390 | case REF_INQUIRY: |
4391 | continue; |
4392 | } |
4393 | } |
4394 | |
4395 | if (!as) |
4396 | gcc_unreachable ()(fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 4396, __FUNCTION__)); |
4397 | |
4398 | done: |
4399 | |
4400 | if (as->cotype == AS_DEFERRED || as->cotype == AS_ASSUMED_SHAPE) |
4401 | return NULL__null; |
4402 | |
4403 | if (dim == NULL__null) |
4404 | { |
4405 | /* Multi-dimensional cobounds. */ |
4406 | gfc_expr *bounds[GFC_MAX_DIMENSIONS15]; |
4407 | gfc_expr *e; |
4408 | int k; |
4409 | |
4410 | /* Simplify the cobounds for each dimension. */ |
4411 | for (d = 0; d < as->corank; d++) |
4412 | { |
4413 | bounds[d] = simplify_bound_dim (array, kind, d + 1 + as->rank, |
4414 | upper, as, ref, true); |
4415 | if (bounds[d] == NULL__null || bounds[d] == &gfc_bad_expr) |
4416 | { |
4417 | int j; |
4418 | |
4419 | for (j = 0; j < d; j++) |
4420 | gfc_free_expr (bounds[j]); |
4421 | return bounds[d]; |
4422 | } |
4423 | } |
4424 | |
4425 | /* Allocate the result expression. */ |
4426 | e = gfc_get_expr (); |
4427 | e->where = array->where; |
4428 | e->expr_type = EXPR_ARRAY; |
4429 | e->ts.type = BT_INTEGER; |
4430 | k = get_kind (BT_INTEGER, kind, upper ? "UCOBOUND" : "LCOBOUND", |
4431 | gfc_default_integer_kind); |
4432 | if (k == -1) |
4433 | { |
4434 | gfc_free_expr (e); |
4435 | return &gfc_bad_expr; |
4436 | } |
4437 | e->ts.kind = k; |
4438 | |
4439 | /* The result is a rank 1 array; its size is the rank of the first |
4440 | argument to {L,U}COBOUND. */ |
4441 | e->rank = 1; |
4442 | e->shape = gfc_get_shape (1)(((mpz_t *) xcalloc (((1)), sizeof (mpz_t)))); |
4443 | mpz_init_set_ui__gmpz_init_set_ui (e->shape[0], as->corank); |
4444 | |
4445 | /* Create the constructor for this array. */ |
4446 | for (d = 0; d < as->corank; d++) |
4447 | gfc_constructor_append_expr (&e->value.constructor, |
4448 | bounds[d], &e->where); |
4449 | return e; |
4450 | } |
4451 | else |
4452 | { |
4453 | /* A DIM argument is specified. */ |
4454 | if (dim->expr_type != EXPR_CONSTANT) |
4455 | return NULL__null; |
4456 | |
4457 | d = mpz_get_si__gmpz_get_si (dim->value.integer); |
4458 | |
4459 | if (d < 1 || d > as->corank) |
4460 | { |
4461 | gfc_error ("DIM argument at %L is out of bounds", &dim->where); |
4462 | return &gfc_bad_expr; |
4463 | } |
4464 | |
4465 | return simplify_bound_dim (array, kind, d+as->rank, upper, as, ref, true); |
4466 | } |
4467 | } |
4468 | |
4469 | |
4470 | gfc_expr * |
4471 | gfc_simplify_lbound (gfc_expr *array, gfc_expr *dim, gfc_expr *kind) |
4472 | { |
4473 | return simplify_bound (array, dim, kind, 0); |
4474 | } |
4475 | |
4476 | |
4477 | gfc_expr * |
4478 | gfc_simplify_lcobound (gfc_expr *array, gfc_expr *dim, gfc_expr *kind) |
4479 | { |
4480 | return simplify_cobound (array, dim, kind, 0); |
4481 | } |
4482 | |
4483 | gfc_expr * |
4484 | gfc_simplify_leadz (gfc_expr *e) |
4485 | { |
4486 | unsigned long lz, bs; |
4487 | int i; |
4488 | |
4489 | if (e->expr_type != EXPR_CONSTANT) |
4490 | return NULL__null; |
4491 | |
4492 | i = gfc_validate_kind (e->ts.type, e->ts.kind, false); |
4493 | bs = gfc_integer_kinds[i].bit_size; |
4494 | if (mpz_cmp_si (e->value.integer, 0)(__builtin_constant_p ((0) >= 0) && (0) >= 0 ? ( __builtin_constant_p ((static_cast<unsigned long> (0))) && ((static_cast<unsigned long> (0))) == 0 ? ( (e->value.integer)->_mp_size < 0 ? -1 : (e->value .integer)->_mp_size > 0) : __gmpz_cmp_ui (e->value.integer ,(static_cast<unsigned long> (0)))) : __gmpz_cmp_si (e-> value.integer,0)) == 0) |
4495 | lz = bs; |
4496 | else if (mpz_cmp_si (e->value.integer, 0)(__builtin_constant_p ((0) >= 0) && (0) >= 0 ? ( __builtin_constant_p ((static_cast<unsigned long> (0))) && ((static_cast<unsigned long> (0))) == 0 ? ( (e->value.integer)->_mp_size < 0 ? -1 : (e->value .integer)->_mp_size > 0) : __gmpz_cmp_ui (e->value.integer ,(static_cast<unsigned long> (0)))) : __gmpz_cmp_si (e-> value.integer,0)) < 0) |
4497 | lz = 0; |
4498 | else |
4499 | lz = bs - mpz_sizeinbase__gmpz_sizeinbase (e->value.integer, 2); |
4500 | |
4501 | return gfc_get_int_expr (gfc_default_integer_kind, &e->where, lz); |
4502 | } |
4503 | |
4504 | |
4505 | gfc_expr * |
4506 | gfc_simplify_len (gfc_expr *e, gfc_expr *kind) |
4507 | { |
4508 | gfc_expr *result; |
4509 | int k = get_kind (BT_INTEGER, kind, "LEN", gfc_default_integer_kind); |
4510 | |
4511 | if (k == -1) |
4512 | return &gfc_bad_expr; |
4513 | |
4514 | if (e->expr_type == EXPR_CONSTANT) |
4515 | { |
4516 | result = gfc_get_constant_expr (BT_INTEGER, k, &e->where); |
4517 | mpz_set_si__gmpz_set_si (result->value.integer, e->value.character.length); |
4518 | return range_check (result, "LEN"); |
4519 | } |
4520 | else if (e->ts.u.cl != NULL__null && e->ts.u.cl->length != NULL__null |
4521 | && e->ts.u.cl->length->expr_type == EXPR_CONSTANT |
4522 | && e->ts.u.cl->length->ts.type == BT_INTEGER) |
4523 | { |
4524 | result = gfc_get_constant_expr (BT_INTEGER, k, &e->where); |
4525 | mpz_set__gmpz_set (result->value.integer, e->ts.u.cl->length->value.integer); |
4526 | return range_check (result, "LEN"); |
4527 | } |
4528 | else if (e->expr_type == EXPR_VARIABLE && e->ts.type == BT_CHARACTER |
4529 | && e->symtree->n.sym |
4530 | && e->symtree->n.sym->ts.type != BT_DERIVED |
4531 | && e->symtree->n.sym->assoc && e->symtree->n.sym->assoc->target |
4532 | && e->symtree->n.sym->assoc->target->ts.type == BT_DERIVED |
4533 | && e->symtree->n.sym->assoc->target->symtree->n.sym |
4534 | && UNLIMITED_POLY (e->symtree->n.sym->assoc->target->symtree->n.sym)(e->symtree->n.sym->assoc->target->symtree-> n.sym != __null && e->symtree->n.sym->assoc-> target->symtree->n.sym->ts.type == BT_CLASS && e->symtree->n.sym->assoc->target->symtree-> n.sym->ts.u.derived->components && e->symtree ->n.sym->assoc->target->symtree->n.sym->ts. u.derived->components->ts.u.derived && e->symtree ->n.sym->assoc->target->symtree->n.sym->ts. u.derived->components->ts.u.derived->attr.unlimited_polymorphic )) |
4535 | |
4536 | /* The expression in assoc->target points to a ref to the _data component |
4537 | of the unlimited polymorphic entity. To get the _len component the last |
4538 | _data ref needs to be stripped and a ref to the _len component added. */ |
4539 | return gfc_get_len_component (e->symtree->n.sym->assoc->target, k); |
4540 | else |
4541 | return NULL__null; |
4542 | } |
4543 | |
4544 | |
4545 | gfc_expr * |
4546 | gfc_simplify_len_trim (gfc_expr *e, gfc_expr *kind) |
4547 | { |
4548 | gfc_expr *result; |
4549 | size_t count, len, i; |
4550 | int k = get_kind (BT_INTEGER, kind, "LEN_TRIM", gfc_default_integer_kind); |
4551 | |
4552 | if (k == -1) |
4553 | return &gfc_bad_expr; |
4554 | |
4555 | if (e->expr_type != EXPR_CONSTANT) |
4556 | return NULL__null; |
4557 | |
4558 | len = e->value.character.length; |
4559 | for (count = 0, i = 1; i <= len; i++) |
4560 | if (e->value.character.string[len - i] == ' ') |
4561 | count++; |
4562 | else |
4563 | break; |
4564 | |
4565 | result = gfc_get_int_expr (k, &e->where, len - count); |
4566 | return range_check (result, "LEN_TRIM"); |
4567 | } |
4568 | |
4569 | gfc_expr * |
4570 | gfc_simplify_lgamma (gfc_expr *x) |
4571 | { |
4572 | gfc_expr *result; |
4573 | int sg; |
4574 | |
4575 | if (x->expr_type != EXPR_CONSTANT) |
4576 | return NULL__null; |
4577 | |
4578 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
4579 | mpfr_lgamma (result->value.real, &sg, x->value.real, GFC_RND_MODEMPFR_RNDN); |
4580 | |
4581 | return range_check (result, "LGAMMA"); |
4582 | } |
4583 | |
4584 | |
4585 | gfc_expr * |
4586 | gfc_simplify_lge (gfc_expr *a, gfc_expr *b) |
4587 | { |
4588 | if (a->expr_type != EXPR_CONSTANT || b->expr_type != EXPR_CONSTANT) |
4589 | return NULL__null; |
4590 | |
4591 | return gfc_get_logical_expr (gfc_default_logical_kind, &a->where, |
4592 | gfc_compare_string (a, b) >= 0); |
4593 | } |
4594 | |
4595 | |
4596 | gfc_expr * |
4597 | gfc_simplify_lgt (gfc_expr *a, gfc_expr *b) |
4598 | { |
4599 | if (a->expr_type != EXPR_CONSTANT || b->expr_type != EXPR_CONSTANT) |
4600 | return NULL__null; |
4601 | |
4602 | return gfc_get_logical_expr (gfc_default_logical_kind, &a->where, |
4603 | gfc_compare_string (a, b) > 0); |
4604 | } |
4605 | |
4606 | |
4607 | gfc_expr * |
4608 | gfc_simplify_lle (gfc_expr *a, gfc_expr *b) |
4609 | { |
4610 | if (a->expr_type != EXPR_CONSTANT || b->expr_type != EXPR_CONSTANT) |
4611 | return NULL__null; |
4612 | |
4613 | return gfc_get_logical_expr (gfc_default_logical_kind, &a->where, |
4614 | gfc_compare_string (a, b) <= 0); |
4615 | } |
4616 | |
4617 | |
4618 | gfc_expr * |
4619 | gfc_simplify_llt (gfc_expr *a, gfc_expr *b) |
4620 | { |
4621 | if (a->expr_type != EXPR_CONSTANT || b->expr_type != EXPR_CONSTANT) |
4622 | return NULL__null; |
4623 | |
4624 | return gfc_get_logical_expr (gfc_default_logical_kind, &a->where, |
4625 | gfc_compare_string (a, b) < 0); |
4626 | } |
4627 | |
4628 | |
4629 | gfc_expr * |
4630 | gfc_simplify_log (gfc_expr *x) |
4631 | { |
4632 | gfc_expr *result; |
4633 | |
4634 | if (x->expr_type != EXPR_CONSTANT) |
4635 | return NULL__null; |
4636 | |
4637 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
4638 | |
4639 | switch (x->ts.type) |
4640 | { |
4641 | case BT_REAL: |
4642 | if (mpfr_sgn (x->value.real)((x->value.real)->_mpfr_exp < (2 - ((mpfr_exp_t) ((( mpfr_uexp_t) -1) >> 1))) ? (((x->value.real)->_mpfr_exp == (1 - ((mpfr_exp_t) (((mpfr_uexp_t) -1) >> 1)))) ? mpfr_set_erangeflag () : (mpfr_void) 0), 0 : ((x->value.real)->_mpfr_sign) ) <= 0) |
4643 | { |
4644 | gfc_error ("Argument of LOG at %L cannot be less than or equal " |
4645 | "to zero", &x->where); |
4646 | gfc_free_expr (result); |
4647 | return &gfc_bad_expr; |
4648 | } |
4649 | |
4650 | mpfr_log (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
4651 | break; |
4652 | |
4653 | case BT_COMPLEX: |
4654 | if (mpfr_zero_p (mpc_realref (x->value.complex))((((x->value.complex)->re))->_mpfr_exp == (0 - ((mpfr_exp_t ) (((mpfr_uexp_t) -1) >> 1)))) |
4655 | && mpfr_zero_p (mpc_imagref (x->value.complex))((((x->value.complex)->im))->_mpfr_exp == (0 - ((mpfr_exp_t ) (((mpfr_uexp_t) -1) >> 1))))) |
4656 | { |
4657 | gfc_error ("Complex argument of LOG at %L cannot be zero", |
4658 | &x->where); |
4659 | gfc_free_expr (result); |
4660 | return &gfc_bad_expr; |
4661 | } |
4662 | |
4663 | gfc_set_model_kind (x->ts.kind); |
4664 | mpc_log (result->value.complex, x->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
4665 | break; |
4666 | |
4667 | default: |
4668 | gfc_internal_error ("gfc_simplify_log: bad type"); |
4669 | } |
4670 | |
4671 | return range_check (result, "LOG"); |
4672 | } |
4673 | |
4674 | |
4675 | gfc_expr * |
4676 | gfc_simplify_log10 (gfc_expr *x) |
4677 | { |
4678 | gfc_expr *result; |
4679 | |
4680 | if (x->expr_type != EXPR_CONSTANT) |
4681 | return NULL__null; |
4682 | |
4683 | if (mpfr_sgn (x->value.real)((x->value.real)->_mpfr_exp < (2 - ((mpfr_exp_t) ((( mpfr_uexp_t) -1) >> 1))) ? (((x->value.real)->_mpfr_exp == (1 - ((mpfr_exp_t) (((mpfr_uexp_t) -1) >> 1)))) ? mpfr_set_erangeflag () : (mpfr_void) 0), 0 : ((x->value.real)->_mpfr_sign) ) <= 0) |
4684 | { |
4685 | gfc_error ("Argument of LOG10 at %L cannot be less than or equal " |
4686 | "to zero", &x->where); |
4687 | return &gfc_bad_expr; |
4688 | } |
4689 | |
4690 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
4691 | mpfr_log10 (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
4692 | |
4693 | return range_check (result, "LOG10"); |
4694 | } |
4695 | |
4696 | |
4697 | gfc_expr * |
4698 | gfc_simplify_logical (gfc_expr *e, gfc_expr *k) |
4699 | { |
4700 | int kind; |
4701 | |
4702 | kind = get_kind (BT_LOGICAL, k, "LOGICAL", gfc_default_logical_kind); |
4703 | if (kind < 0) |
4704 | return &gfc_bad_expr; |
4705 | |
4706 | if (e->expr_type != EXPR_CONSTANT) |
4707 | return NULL__null; |
4708 | |
4709 | return gfc_get_logical_expr (kind, &e->where, e->value.logical); |
4710 | } |
4711 | |
4712 | |
4713 | gfc_expr* |
4714 | gfc_simplify_matmul (gfc_expr *matrix_a, gfc_expr *matrix_b) |
4715 | { |
4716 | gfc_expr *result; |
4717 | int row, result_rows, col, result_columns; |
4718 | int stride_a, offset_a, stride_b, offset_b; |
4719 | |
4720 | if (!is_constant_array_expr (matrix_a) |
4721 | || !is_constant_array_expr (matrix_b)) |
4722 | return NULL__null; |
4723 | |
4724 | /* MATMUL should do mixed-mode arithmetic. Set the result type. */ |
4725 | if (matrix_a->ts.type != matrix_b->ts.type) |
4726 | { |
4727 | gfc_expr e; |
4728 | e.expr_type = EXPR_OP; |
4729 | gfc_clear_ts (&e.ts); |
4730 | e.value.op.op = INTRINSIC_NONE; |
4731 | e.value.op.op1 = matrix_a; |
4732 | e.value.op.op2 = matrix_b; |
4733 | gfc_type_convert_binary (&e, 1); |
4734 | result = gfc_get_array_expr (e.ts.type, e.ts.kind, &matrix_a->where); |
4735 | } |
4736 | else |
4737 | { |
4738 | result = gfc_get_array_expr (matrix_a->ts.type, matrix_a->ts.kind, |
4739 | &matrix_a->where); |
4740 | } |
4741 | |
4742 | if (matrix_a->rank == 1 && matrix_b->rank == 2) |
4743 | { |
4744 | result_rows = 1; |
4745 | result_columns = mpz_get_si__gmpz_get_si (matrix_b->shape[1]); |
4746 | stride_a = 1; |
4747 | stride_b = mpz_get_si__gmpz_get_si (matrix_b->shape[0]); |
4748 | |
4749 | result->rank = 1; |
4750 | result->shape = gfc_get_shape (result->rank)(((mpz_t *) xcalloc (((result->rank)), sizeof (mpz_t)))); |
4751 | mpz_init_set_si__gmpz_init_set_si (result->shape[0], result_columns); |
4752 | } |
4753 | else if (matrix_a->rank == 2 && matrix_b->rank == 1) |
4754 | { |
4755 | result_rows = mpz_get_si__gmpz_get_si (matrix_a->shape[0]); |
4756 | result_columns = 1; |
4757 | stride_a = mpz_get_si__gmpz_get_si (matrix_a->shape[0]); |
4758 | stride_b = 1; |
4759 | |
4760 | result->rank = 1; |
4761 | result->shape = gfc_get_shape (result->rank)(((mpz_t *) xcalloc (((result->rank)), sizeof (mpz_t)))); |
4762 | mpz_init_set_si__gmpz_init_set_si (result->shape[0], result_rows); |
4763 | } |
4764 | else if (matrix_a->rank == 2 && matrix_b->rank == 2) |
4765 | { |
4766 | result_rows = mpz_get_si__gmpz_get_si (matrix_a->shape[0]); |
4767 | result_columns = mpz_get_si__gmpz_get_si (matrix_b->shape[1]); |
4768 | stride_a = mpz_get_si__gmpz_get_si (matrix_a->shape[0]); |
4769 | stride_b = mpz_get_si__gmpz_get_si (matrix_b->shape[0]); |
4770 | |
4771 | result->rank = 2; |
4772 | result->shape = gfc_get_shape (result->rank)(((mpz_t *) xcalloc (((result->rank)), sizeof (mpz_t)))); |
4773 | mpz_init_set_si__gmpz_init_set_si (result->shape[0], result_rows); |
4774 | mpz_init_set_si__gmpz_init_set_si (result->shape[1], result_columns); |
4775 | } |
4776 | else |
4777 | gcc_unreachable()(fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 4777, __FUNCTION__)); |
4778 | |
4779 | offset_b = 0; |
4780 | for (col = 0; col < result_columns; ++col) |
4781 | { |
4782 | offset_a = 0; |
4783 | |
4784 | for (row = 0; row < result_rows; ++row) |
4785 | { |
4786 | gfc_expr *e = compute_dot_product (matrix_a, stride_a, offset_a, |
4787 | matrix_b, 1, offset_b, false); |
4788 | gfc_constructor_append_expr (&result->value.constructor, |
4789 | e, NULL__null); |
4790 | |
4791 | offset_a += 1; |
4792 | } |
4793 | |
4794 | offset_b += stride_b; |
4795 | } |
4796 | |
4797 | return result; |
4798 | } |
4799 | |
4800 | |
4801 | gfc_expr * |
4802 | gfc_simplify_maskr (gfc_expr *i, gfc_expr *kind_arg) |
4803 | { |
4804 | gfc_expr *result; |
4805 | int kind, arg, k; |
4806 | |
4807 | if (i->expr_type != EXPR_CONSTANT) |
4808 | return NULL__null; |
4809 | |
4810 | kind = get_kind (BT_INTEGER, kind_arg, "MASKR", gfc_default_integer_kind); |
4811 | if (kind == -1) |
4812 | return &gfc_bad_expr; |
4813 | k = gfc_validate_kind (BT_INTEGER, kind, false); |
4814 | |
4815 | bool fail = gfc_extract_int (i, &arg); |
4816 | gcc_assert (!fail)((void)(!(!fail) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 4816, __FUNCTION__), 0 : 0)); |
4817 | |
4818 | result = gfc_get_constant_expr (BT_INTEGER, kind, &i->where); |
4819 | |
4820 | /* MASKR(n) = 2^n - 1 */ |
4821 | mpz_set_ui__gmpz_set_ui (result->value.integer, 1); |
4822 | mpz_mul_2exp__gmpz_mul_2exp (result->value.integer, result->value.integer, arg); |
4823 | mpz_sub_ui__gmpz_sub_ui (result->value.integer, result->value.integer, 1); |
4824 | |
4825 | gfc_convert_mpz_to_signed (result->value.integer, gfc_integer_kinds[k].bit_size); |
4826 | |
4827 | return result; |
4828 | } |
4829 | |
4830 | |
4831 | gfc_expr * |
4832 | gfc_simplify_maskl (gfc_expr *i, gfc_expr *kind_arg) |
4833 | { |
4834 | gfc_expr *result; |
4835 | int kind, arg, k; |
4836 | mpz_t z; |
4837 | |
4838 | if (i->expr_type != EXPR_CONSTANT) |
4839 | return NULL__null; |
4840 | |
4841 | kind = get_kind (BT_INTEGER, kind_arg, "MASKL", gfc_default_integer_kind); |
4842 | if (kind == -1) |
4843 | return &gfc_bad_expr; |
4844 | k = gfc_validate_kind (BT_INTEGER, kind, false); |
4845 | |
4846 | bool fail = gfc_extract_int (i, &arg); |
4847 | gcc_assert (!fail)((void)(!(!fail) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 4847, __FUNCTION__), 0 : 0)); |
4848 | |
4849 | result = gfc_get_constant_expr (BT_INTEGER, kind, &i->where); |
4850 | |
4851 | /* MASKL(n) = 2^bit_size - 2^(bit_size - n) */ |
4852 | mpz_init_set_ui__gmpz_init_set_ui (z, 1); |
4853 | mpz_mul_2exp__gmpz_mul_2exp (z, z, gfc_integer_kinds[k].bit_size); |
4854 | mpz_set_ui__gmpz_set_ui (result->value.integer, 1); |
4855 | mpz_mul_2exp__gmpz_mul_2exp (result->value.integer, result->value.integer, |
4856 | gfc_integer_kinds[k].bit_size - arg); |
4857 | mpz_sub__gmpz_sub (result->value.integer, z, result->value.integer); |
4858 | mpz_clear__gmpz_clear (z); |
4859 | |
4860 | gfc_convert_mpz_to_signed (result->value.integer, gfc_integer_kinds[k].bit_size); |
4861 | |
4862 | return result; |
4863 | } |
4864 | |
4865 | |
4866 | gfc_expr * |
4867 | gfc_simplify_merge (gfc_expr *tsource, gfc_expr *fsource, gfc_expr *mask) |
4868 | { |
4869 | gfc_expr * result; |
4870 | gfc_constructor *tsource_ctor, *fsource_ctor, *mask_ctor; |
4871 | |
4872 | if (mask->expr_type == EXPR_CONSTANT) |
4873 | { |
4874 | result = gfc_copy_expr (mask->value.logical ? tsource : fsource); |
4875 | /* Parenthesis is needed to get lower bounds of 1. */ |
4876 | result = gfc_get_parentheses (result); |
4877 | gfc_simplify_expr (result, 1); |
4878 | return result; |
4879 | } |
4880 | |
4881 | if (!mask->rank || !is_constant_array_expr (mask) |
4882 | || !is_constant_array_expr (tsource) || !is_constant_array_expr (fsource)) |
4883 | return NULL__null; |
4884 | |
4885 | result = gfc_get_array_expr (tsource->ts.type, tsource->ts.kind, |
4886 | &tsource->where); |
4887 | if (tsource->ts.type == BT_DERIVED) |
4888 | result->ts.u.derived = tsource->ts.u.derived; |
4889 | else if (tsource->ts.type == BT_CHARACTER) |
4890 | result->ts.u.cl = tsource->ts.u.cl; |
4891 | |
4892 | tsource_ctor = gfc_constructor_first (tsource->value.constructor); |
4893 | fsource_ctor = gfc_constructor_first (fsource->value.constructor); |
4894 | mask_ctor = gfc_constructor_first (mask->value.constructor); |
4895 | |
4896 | while (mask_ctor) |
4897 | { |
4898 | if (mask_ctor->expr->value.logical) |
4899 | gfc_constructor_append_expr (&result->value.constructor, |
4900 | gfc_copy_expr (tsource_ctor->expr), |
4901 | NULL__null); |
4902 | else |
4903 | gfc_constructor_append_expr (&result->value.constructor, |
4904 | gfc_copy_expr (fsource_ctor->expr), |
4905 | NULL__null); |
4906 | tsource_ctor = gfc_constructor_next (tsource_ctor); |
4907 | fsource_ctor = gfc_constructor_next (fsource_ctor); |
4908 | mask_ctor = gfc_constructor_next (mask_ctor); |
4909 | } |
4910 | |
4911 | result->shape = gfc_get_shape (1)(((mpz_t *) xcalloc (((1)), sizeof (mpz_t)))); |
4912 | gfc_array_size (result, &result->shape[0]); |
4913 | |
4914 | return result; |
4915 | } |
4916 | |
4917 | |
4918 | gfc_expr * |
4919 | gfc_simplify_merge_bits (gfc_expr *i, gfc_expr *j, gfc_expr *mask_expr) |
4920 | { |
4921 | mpz_t arg1, arg2, mask; |
4922 | gfc_expr *result; |
4923 | |
4924 | if (i->expr_type != EXPR_CONSTANT || j->expr_type != EXPR_CONSTANT |
4925 | || mask_expr->expr_type != EXPR_CONSTANT) |
4926 | return NULL__null; |
4927 | |
4928 | result = gfc_get_constant_expr (BT_INTEGER, i->ts.kind, &i->where); |
4929 | |
4930 | /* Convert all argument to unsigned. */ |
4931 | mpz_init_set__gmpz_init_set (arg1, i->value.integer); |
4932 | mpz_init_set__gmpz_init_set (arg2, j->value.integer); |
4933 | mpz_init_set__gmpz_init_set (mask, mask_expr->value.integer); |
4934 | |
4935 | /* MERGE_BITS(I,J,MASK) = IOR (IAND (I, MASK), IAND (J, NOT (MASK))). */ |
4936 | mpz_and__gmpz_and (arg1, arg1, mask); |
4937 | mpz_com__gmpz_com (mask, mask); |
4938 | mpz_and__gmpz_and (arg2, arg2, mask); |
4939 | mpz_ior__gmpz_ior (result->value.integer, arg1, arg2); |
4940 | |
4941 | mpz_clear__gmpz_clear (arg1); |
4942 | mpz_clear__gmpz_clear (arg2); |
4943 | mpz_clear__gmpz_clear (mask); |
4944 | |
4945 | return result; |
4946 | } |
4947 | |
4948 | |
4949 | /* Selects between current value and extremum for simplify_min_max |
4950 | and simplify_minval_maxval. */ |
4951 | static int |
4952 | min_max_choose (gfc_expr *arg, gfc_expr *extremum, int sign, bool back_val) |
4953 | { |
4954 | int ret; |
4955 | |
4956 | switch (arg->ts.type) |
4957 | { |
4958 | case BT_INTEGER: |
4959 | if (extremum->ts.kind < arg->ts.kind) |
4960 | extremum->ts.kind = arg->ts.kind; |
4961 | ret = mpz_cmp__gmpz_cmp (arg->value.integer, |
4962 | extremum->value.integer) * sign; |
4963 | if (ret > 0) |
4964 | mpz_set__gmpz_set (extremum->value.integer, arg->value.integer); |
4965 | break; |
4966 | |
4967 | case BT_REAL: |
4968 | if (extremum->ts.kind < arg->ts.kind) |
4969 | extremum->ts.kind = arg->ts.kind; |
4970 | if (mpfr_nan_p (extremum->value.real)((extremum->value.real)->_mpfr_exp == (1 - ((mpfr_exp_t ) (((mpfr_uexp_t) -1) >> 1))))) |
4971 | { |
4972 | ret = 1; |
4973 | mpfr_set (extremum->value.real, arg->value.real, GFC_RND_MODE)mpfr_set4(extremum->value.real,arg->value.real,MPFR_RNDN ,((arg->value.real)->_mpfr_sign)); |
4974 | } |
4975 | else if (mpfr_nan_p (arg->value.real)((arg->value.real)->_mpfr_exp == (1 - ((mpfr_exp_t) ((( mpfr_uexp_t) -1) >> 1))))) |
4976 | ret = -1; |
4977 | else |
4978 | { |
4979 | ret = mpfr_cmp (arg->value.real, extremum->value.real)mpfr_cmp3(arg->value.real, extremum->value.real, 1) * sign; |
4980 | if (ret > 0) |
4981 | mpfr_set (extremum->value.real, arg->value.real, GFC_RND_MODE)mpfr_set4(extremum->value.real,arg->value.real,MPFR_RNDN ,((arg->value.real)->_mpfr_sign)); |
4982 | } |
4983 | break; |
4984 | |
4985 | case BT_CHARACTER: |
4986 | #define LENGTH(x) ((x)->value.character.length) |
4987 | #define STRING(x) ((x)->value.character.string) |
4988 | if (LENGTH (extremum) < LENGTH(arg)) |
4989 | { |
4990 | gfc_char_t *tmp = STRING(extremum); |
4991 | |
4992 | STRING(extremum) = gfc_get_wide_string (LENGTH(arg) + 1)((gfc_char_t *) xcalloc ((LENGTH(arg) + 1), sizeof (gfc_char_t ))); |
4993 | memcpy (STRING(extremum), tmp, |
4994 | LENGTH(extremum) * sizeof (gfc_char_t)); |
4995 | gfc_wide_memset (&STRING(extremum)[LENGTH(extremum)], ' ', |
4996 | LENGTH(arg) - LENGTH(extremum)); |
4997 | STRING(extremum)[LENGTH(arg)] = '\0'; /* For debugger */ |
4998 | LENGTH(extremum) = LENGTH(arg); |
4999 | free (tmp); |
5000 | } |
5001 | ret = gfc_compare_string (arg, extremum) * sign; |
5002 | if (ret > 0) |
5003 | { |
5004 | free (STRING(extremum)); |
5005 | STRING(extremum) = gfc_get_wide_string (LENGTH(extremum) + 1)((gfc_char_t *) xcalloc ((LENGTH(extremum) + 1), sizeof (gfc_char_t ))); |
5006 | memcpy (STRING(extremum), STRING(arg), |
5007 | LENGTH(arg) * sizeof (gfc_char_t)); |
5008 | gfc_wide_memset (&STRING(extremum)[LENGTH(arg)], ' ', |
5009 | LENGTH(extremum) - LENGTH(arg)); |
5010 | STRING(extremum)[LENGTH(extremum)] = '\0'; /* For debugger */ |
5011 | } |
5012 | #undef LENGTH |
5013 | #undef STRING |
5014 | break; |
5015 | |
5016 | default: |
5017 | gfc_internal_error ("simplify_min_max(): Bad type in arglist"); |
5018 | } |
5019 | if (back_val && ret == 0) |
5020 | ret = 1; |
5021 | |
5022 | return ret; |
5023 | } |
5024 | |
5025 | |
5026 | /* This function is special since MAX() can take any number of |
5027 | arguments. The simplified expression is a rewritten version of the |
5028 | argument list containing at most one constant element. Other |
5029 | constant elements are deleted. Because the argument list has |
5030 | already been checked, this function always succeeds. sign is 1 for |
5031 | MAX(), -1 for MIN(). */ |
5032 | |
5033 | static gfc_expr * |
5034 | simplify_min_max (gfc_expr *expr, int sign) |
5035 | { |
5036 | gfc_actual_arglist *arg, *last, *extremum; |
5037 | gfc_expr *tmp, *ret; |
5038 | const char *fname; |
5039 | |
5040 | last = NULL__null; |
5041 | extremum = NULL__null; |
5042 | |
5043 | arg = expr->value.function.actual; |
5044 | |
5045 | for (; arg; last = arg, arg = arg->next) |
5046 | { |
5047 | if (arg->expr->expr_type != EXPR_CONSTANT) |
5048 | continue; |
5049 | |
5050 | if (extremum == NULL__null) |
5051 | { |
5052 | extremum = arg; |
5053 | continue; |
5054 | } |
5055 | |
5056 | min_max_choose (arg->expr, extremum->expr, sign); |
5057 | |
5058 | /* Delete the extra constant argument. */ |
5059 | last->next = arg->next; |
5060 | |
5061 | arg->next = NULL__null; |
5062 | gfc_free_actual_arglist (arg); |
5063 | arg = last; |
5064 | } |
5065 | |
5066 | /* If there is one value left, replace the function call with the |
5067 | expression. */ |
5068 | if (expr->value.function.actual->next != NULL__null) |
5069 | return NULL__null; |
5070 | |
5071 | /* Handle special cases of specific functions (min|max)1 and |
5072 | a(min|max)0. */ |
5073 | |
5074 | tmp = expr->value.function.actual->expr; |
5075 | fname = expr->value.function.isym->name; |
5076 | |
5077 | if ((tmp->ts.type != BT_INTEGER || tmp->ts.kind != gfc_integer_4_kind4) |
5078 | && (strcmp (fname, "min1") == 0 || strcmp (fname, "max1") == 0)) |
5079 | { |
5080 | ret = gfc_convert_constant (tmp, BT_INTEGER, gfc_integer_4_kind4); |
5081 | } |
5082 | else if ((tmp->ts.type != BT_REAL || tmp->ts.kind != gfc_real_4_kind4) |
5083 | && (strcmp (fname, "amin0") == 0 || strcmp (fname, "amax0") == 0)) |
5084 | { |
5085 | ret = gfc_convert_constant (tmp, BT_REAL, gfc_real_4_kind4); |
5086 | } |
5087 | else |
5088 | ret = gfc_copy_expr (tmp); |
5089 | |
5090 | return ret; |
5091 | |
5092 | } |
5093 | |
5094 | |
5095 | gfc_expr * |
5096 | gfc_simplify_min (gfc_expr *e) |
5097 | { |
5098 | return simplify_min_max (e, -1); |
5099 | } |
5100 | |
5101 | |
5102 | gfc_expr * |
5103 | gfc_simplify_max (gfc_expr *e) |
5104 | { |
5105 | return simplify_min_max (e, 1); |
5106 | } |
5107 | |
5108 | /* Helper function for gfc_simplify_minval. */ |
5109 | |
5110 | static gfc_expr * |
5111 | gfc_min (gfc_expr *op1, gfc_expr *op2) |
5112 | { |
5113 | min_max_choose (op1, op2, -1); |
5114 | gfc_free_expr (op1); |
5115 | return op2; |
5116 | } |
5117 | |
5118 | /* Simplify minval for constant arrays. */ |
5119 | |
5120 | gfc_expr * |
5121 | gfc_simplify_minval (gfc_expr *array, gfc_expr* dim, gfc_expr *mask) |
5122 | { |
5123 | return simplify_transformation (array, dim, mask, INT_MAX2147483647, gfc_min); |
5124 | } |
5125 | |
5126 | /* Helper function for gfc_simplify_maxval. */ |
5127 | |
5128 | static gfc_expr * |
5129 | gfc_max (gfc_expr *op1, gfc_expr *op2) |
5130 | { |
5131 | min_max_choose (op1, op2, 1); |
5132 | gfc_free_expr (op1); |
5133 | return op2; |
5134 | } |
5135 | |
5136 | |
5137 | /* Simplify maxval for constant arrays. */ |
5138 | |
5139 | gfc_expr * |
5140 | gfc_simplify_maxval (gfc_expr *array, gfc_expr* dim, gfc_expr *mask) |
5141 | { |
5142 | return simplify_transformation (array, dim, mask, INT_MIN(-2147483647 -1), gfc_max); |
5143 | } |
5144 | |
5145 | |
5146 | /* Transform minloc or maxloc of an array, according to MASK, |
5147 | to the scalar result. This code is mostly identical to |
5148 | simplify_transformation_to_scalar. */ |
5149 | |
5150 | static gfc_expr * |
5151 | simplify_minmaxloc_to_scalar (gfc_expr *result, gfc_expr *array, gfc_expr *mask, |
5152 | gfc_expr *extremum, int sign, bool back_val) |
5153 | { |
5154 | gfc_expr *a, *m; |
5155 | gfc_constructor *array_ctor, *mask_ctor; |
5156 | mpz_t count; |
5157 | |
5158 | mpz_set_si__gmpz_set_si (result->value.integer, 0); |
5159 | |
5160 | |
5161 | /* Shortcut for constant .FALSE. MASK. */ |
5162 | if (mask |
5163 | && mask->expr_type == EXPR_CONSTANT |
5164 | && !mask->value.logical) |
5165 | return result; |
5166 | |
5167 | array_ctor = gfc_constructor_first (array->value.constructor); |
5168 | if (mask && mask->expr_type == EXPR_ARRAY) |
5169 | mask_ctor = gfc_constructor_first (mask->value.constructor); |
5170 | else |
5171 | mask_ctor = NULL__null; |
5172 | |
5173 | mpz_init_set_si__gmpz_init_set_si (count, 0); |
5174 | while (array_ctor) |
5175 | { |
5176 | mpz_add_ui__gmpz_add_ui (count, count, 1); |
5177 | a = array_ctor->expr; |
5178 | array_ctor = gfc_constructor_next (array_ctor); |
5179 | /* A constant MASK equals .TRUE. here and can be ignored. */ |
5180 | if (mask_ctor) |
5181 | { |
5182 | m = mask_ctor->expr; |
5183 | mask_ctor = gfc_constructor_next (mask_ctor); |
5184 | if (!m->value.logical) |
5185 | continue; |
5186 | } |
5187 | if (min_max_choose (a, extremum, sign, back_val) > 0) |
5188 | mpz_set__gmpz_set (result->value.integer, count); |
5189 | } |
5190 | mpz_clear__gmpz_clear (count); |
5191 | gfc_free_expr (extremum); |
5192 | return result; |
5193 | } |
5194 | |
5195 | /* Simplify minloc / maxloc in the absence of a dim argument. */ |
5196 | |
5197 | static gfc_expr * |
5198 | simplify_minmaxloc_nodim (gfc_expr *result, gfc_expr *extremum, |
5199 | gfc_expr *array, gfc_expr *mask, int sign, |
5200 | bool back_val) |
5201 | { |
5202 | ssize_t res[GFC_MAX_DIMENSIONS15]; |
5203 | int i, n; |
5204 | gfc_constructor *result_ctor, *array_ctor, *mask_ctor; |
5205 | ssize_t count[GFC_MAX_DIMENSIONS15], extent[GFC_MAX_DIMENSIONS15], |
5206 | sstride[GFC_MAX_DIMENSIONS15]; |
5207 | gfc_expr *a, *m; |
5208 | bool continue_loop; |
5209 | bool ma; |
5210 | |
5211 | for (i = 0; i<array->rank; i++) |
5212 | res[i] = -1; |
5213 | |
5214 | /* Shortcut for constant .FALSE. MASK. */ |
5215 | if (mask |
5216 | && mask->expr_type == EXPR_CONSTANT |
5217 | && !mask->value.logical) |
5218 | goto finish; |
5219 | |
5220 | for (i = 0; i < array->rank; i++) |
5221 | { |
5222 | count[i] = 0; |
5223 | sstride[i] = (i == 0) ? 1 : sstride[i-1] * mpz_get_si__gmpz_get_si (array->shape[i-1]); |
5224 | extent[i] = mpz_get_si__gmpz_get_si (array->shape[i]); |
5225 | if (extent[i] <= 0) |
5226 | goto finish; |
5227 | } |
5228 | |
5229 | continue_loop = true; |
5230 | array_ctor = gfc_constructor_first (array->value.constructor); |
5231 | if (mask && mask->rank > 0) |
5232 | mask_ctor = gfc_constructor_first (mask->value.constructor); |
5233 | else |
5234 | mask_ctor = NULL__null; |
5235 | |
5236 | /* Loop over the array elements (and mask), keeping track of |
5237 | the indices to return. */ |
5238 | while (continue_loop) |
5239 | { |
5240 | do |
5241 | { |
5242 | a = array_ctor->expr; |
5243 | if (mask_ctor) |
5244 | { |
5245 | m = mask_ctor->expr; |
5246 | ma = m->value.logical; |
5247 | mask_ctor = gfc_constructor_next (mask_ctor); |
5248 | } |
5249 | else |
5250 | ma = true; |
5251 | |
5252 | if (ma && min_max_choose (a, extremum, sign, back_val) > 0) |
5253 | { |
5254 | for (i = 0; i<array->rank; i++) |
5255 | res[i] = count[i]; |
5256 | } |
5257 | array_ctor = gfc_constructor_next (array_ctor); |
5258 | count[0] ++; |
5259 | } while (count[0] != extent[0]); |
5260 | n = 0; |
5261 | do |
5262 | { |
5263 | /* When we get to the end of a dimension, reset it and increment |
5264 | the next dimension. */ |
5265 | count[n] = 0; |
5266 | n++; |
5267 | if (n >= array->rank) |
5268 | { |
5269 | continue_loop = false; |
5270 | break; |
5271 | } |
5272 | else |
5273 | count[n] ++; |
5274 | } while (count[n] == extent[n]); |
5275 | } |
5276 | |
5277 | finish: |
5278 | gfc_free_expr (extremum); |
5279 | result_ctor = gfc_constructor_first (result->value.constructor); |
5280 | for (i = 0; i<array->rank; i++) |
5281 | { |
5282 | gfc_expr *r_expr; |
5283 | r_expr = result_ctor->expr; |
5284 | mpz_set_si__gmpz_set_si (r_expr->value.integer, res[i] + 1); |
5285 | result_ctor = gfc_constructor_next (result_ctor); |
5286 | } |
5287 | return result; |
5288 | } |
5289 | |
5290 | /* Helper function for gfc_simplify_minmaxloc - build an array |
5291 | expression with n elements. */ |
5292 | |
5293 | static gfc_expr * |
5294 | new_array (bt type, int kind, int n, locus *where) |
5295 | { |
5296 | gfc_expr *result; |
5297 | int i; |
5298 | |
5299 | result = gfc_get_array_expr (type, kind, where); |
5300 | result->rank = 1; |
5301 | result->shape = gfc_get_shape(1)(((mpz_t *) xcalloc (((1)), sizeof (mpz_t)))); |
5302 | mpz_init_set_si__gmpz_init_set_si (result->shape[0], n); |
5303 | for (i = 0; i < n; i++) |
5304 | { |
5305 | gfc_constructor_append_expr (&result->value.constructor, |
5306 | gfc_get_constant_expr (type, kind, where), |
5307 | NULL__null); |
5308 | } |
5309 | |
5310 | return result; |
5311 | } |
5312 | |
5313 | /* Simplify minloc and maxloc. This code is mostly identical to |
5314 | simplify_transformation_to_array. */ |
5315 | |
5316 | static gfc_expr * |
5317 | simplify_minmaxloc_to_array (gfc_expr *result, gfc_expr *array, |
5318 | gfc_expr *dim, gfc_expr *mask, |
5319 | gfc_expr *extremum, int sign, bool back_val) |
5320 | { |
5321 | mpz_t size; |
5322 | int done, i, n, arraysize, resultsize, dim_index, dim_extent, dim_stride; |
5323 | gfc_expr **arrayvec, **resultvec, **base, **src, **dest; |
5324 | gfc_constructor *array_ctor, *mask_ctor, *result_ctor; |
5325 | |
5326 | int count[GFC_MAX_DIMENSIONS15], extent[GFC_MAX_DIMENSIONS15], |
5327 | sstride[GFC_MAX_DIMENSIONS15], dstride[GFC_MAX_DIMENSIONS15], |
5328 | tmpstride[GFC_MAX_DIMENSIONS15]; |
5329 | |
5330 | /* Shortcut for constant .FALSE. MASK. */ |
5331 | if (mask |
5332 | && mask->expr_type == EXPR_CONSTANT |
5333 | && !mask->value.logical) |
5334 | return result; |
5335 | |
5336 | /* Build an indexed table for array element expressions to minimize |
5337 | linked-list traversal. Masked elements are set to NULL. */ |
5338 | gfc_array_size (array, &size); |
5339 | arraysize = mpz_get_ui__gmpz_get_ui (size); |
5340 | mpz_clear__gmpz_clear (size); |
5341 | |
5342 | arrayvec = XCNEWVEC (gfc_expr*, arraysize)((gfc_expr* *) xcalloc ((arraysize), sizeof (gfc_expr*))); |
5343 | |
5344 | array_ctor = gfc_constructor_first (array->value.constructor); |
5345 | mask_ctor = NULL__null; |
5346 | if (mask && mask->expr_type == EXPR_ARRAY) |
5347 | mask_ctor = gfc_constructor_first (mask->value.constructor); |
5348 | |
5349 | for (i = 0; i < arraysize; ++i) |
5350 | { |
5351 | arrayvec[i] = array_ctor->expr; |
5352 | array_ctor = gfc_constructor_next (array_ctor); |
5353 | |
5354 | if (mask_ctor) |
5355 | { |
5356 | if (!mask_ctor->expr->value.logical) |
5357 | arrayvec[i] = NULL__null; |
5358 | |
5359 | mask_ctor = gfc_constructor_next (mask_ctor); |
5360 | } |
5361 | } |
5362 | |
5363 | /* Same for the result expression. */ |
5364 | gfc_array_size (result, &size); |
5365 | resultsize = mpz_get_ui__gmpz_get_ui (size); |
5366 | mpz_clear__gmpz_clear (size); |
5367 | |
5368 | resultvec = XCNEWVEC (gfc_expr*, resultsize)((gfc_expr* *) xcalloc ((resultsize), sizeof (gfc_expr*))); |
5369 | result_ctor = gfc_constructor_first (result->value.constructor); |
5370 | for (i = 0; i < resultsize; ++i) |
5371 | { |
5372 | resultvec[i] = result_ctor->expr; |
5373 | result_ctor = gfc_constructor_next (result_ctor); |
5374 | } |
5375 | |
5376 | gfc_extract_int (dim, &dim_index); |
5377 | dim_index -= 1; /* zero-base index */ |
5378 | dim_extent = 0; |
5379 | dim_stride = 0; |
5380 | |
5381 | for (i = 0, n = 0; i < array->rank; ++i) |
5382 | { |
5383 | count[i] = 0; |
5384 | tmpstride[i] = (i == 0) ? 1 : tmpstride[i-1] * mpz_get_si__gmpz_get_si (array->shape[i-1]); |
5385 | if (i == dim_index) |
5386 | { |
5387 | dim_extent = mpz_get_si__gmpz_get_si (array->shape[i]); |
5388 | dim_stride = tmpstride[i]; |
5389 | continue; |
5390 | } |
5391 | |
5392 | extent[n] = mpz_get_si__gmpz_get_si (array->shape[i]); |
5393 | sstride[n] = tmpstride[i]; |
5394 | dstride[n] = (n == 0) ? 1 : dstride[n-1] * extent[n-1]; |
5395 | n += 1; |
5396 | } |
5397 | |
5398 | done = resultsize <= 0; |
5399 | base = arrayvec; |
5400 | dest = resultvec; |
5401 | while (!done) |
5402 | { |
5403 | gfc_expr *ex; |
5404 | ex = gfc_copy_expr (extremum); |
5405 | for (src = base, n = 0; n < dim_extent; src += dim_stride, ++n) |
5406 | { |
5407 | if (*src && min_max_choose (*src, ex, sign, back_val) > 0) |
5408 | mpz_set_si__gmpz_set_si ((*dest)->value.integer, n + 1); |
5409 | } |
5410 | |
5411 | count[0]++; |
5412 | base += sstride[0]; |
5413 | dest += dstride[0]; |
5414 | gfc_free_expr (ex); |
5415 | |
5416 | n = 0; |
5417 | while (!done && count[n] == extent[n]) |
5418 | { |
5419 | count[n] = 0; |
5420 | base -= sstride[n] * extent[n]; |
5421 | dest -= dstride[n] * extent[n]; |
5422 | |
5423 | n++; |
5424 | if (n < result->rank) |
5425 | { |
5426 | /* If the nested loop is unrolled GFC_MAX_DIMENSIONS |
5427 | times, we'd warn for the last iteration, because the |
5428 | array index will have already been incremented to the |
5429 | array sizes, and we can't tell that this must make |
5430 | the test against result->rank false, because ranks |
5431 | must not exceed GFC_MAX_DIMENSIONS. */ |
5432 | GCC_DIAGNOSTIC_PUSH_IGNORED (-Warray-bounds) |
5433 | count[n]++; |
5434 | base += sstride[n]; |
5435 | dest += dstride[n]; |
5436 | GCC_DIAGNOSTIC_POP |
5437 | } |
5438 | else |
5439 | done = true; |
5440 | } |
5441 | } |
5442 | |
5443 | /* Place updated expression in result constructor. */ |
5444 | result_ctor = gfc_constructor_first (result->value.constructor); |
5445 | for (i = 0; i < resultsize; ++i) |
5446 | { |
5447 | result_ctor->expr = resultvec[i]; |
5448 | result_ctor = gfc_constructor_next (result_ctor); |
5449 | } |
5450 | |
5451 | free (arrayvec); |
5452 | free (resultvec); |
5453 | free (extremum); |
5454 | return result; |
5455 | } |
5456 | |
5457 | /* Simplify minloc and maxloc for constant arrays. */ |
5458 | |
5459 | static gfc_expr * |
5460 | gfc_simplify_minmaxloc (gfc_expr *array, gfc_expr *dim, gfc_expr *mask, |
5461 | gfc_expr *kind, gfc_expr *back, int sign) |
5462 | { |
5463 | gfc_expr *result; |
5464 | gfc_expr *extremum; |
5465 | int ikind; |
5466 | int init_val; |
5467 | bool back_val = false; |
5468 | |
5469 | if (!is_constant_array_expr (array) |
5470 | || !gfc_is_constant_expr (dim)) |
5471 | return NULL__null; |
5472 | |
5473 | if (mask |
5474 | && !is_constant_array_expr (mask) |
5475 | && mask->expr_type != EXPR_CONSTANT) |
5476 | return NULL__null; |
5477 | |
5478 | if (kind) |
5479 | { |
5480 | if (gfc_extract_int (kind, &ikind, -1)) |
5481 | return NULL__null; |
5482 | } |
5483 | else |
5484 | ikind = gfc_default_integer_kind; |
5485 | |
5486 | if (back) |
5487 | { |
5488 | if (back->expr_type != EXPR_CONSTANT) |
5489 | return NULL__null; |
5490 | |
5491 | back_val = back->value.logical; |
5492 | } |
5493 | |
5494 | if (sign < 0) |
5495 | init_val = INT_MAX2147483647; |
5496 | else if (sign > 0) |
5497 | init_val = INT_MIN(-2147483647 -1); |
5498 | else |
5499 | gcc_unreachable()(fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 5499, __FUNCTION__)); |
5500 | |
5501 | extremum = gfc_get_constant_expr (array->ts.type, array->ts.kind, &array->where); |
5502 | init_result_expr (extremum, init_val, array); |
5503 | |
5504 | if (dim) |
5505 | { |
5506 | result = transformational_result (array, dim, BT_INTEGER, |
5507 | ikind, &array->where); |
5508 | init_result_expr (result, 0, array); |
5509 | |
5510 | if (array->rank == 1) |
5511 | return simplify_minmaxloc_to_scalar (result, array, mask, extremum, |
5512 | sign, back_val); |
5513 | else |
5514 | return simplify_minmaxloc_to_array (result, array, dim, mask, extremum, |
5515 | sign, back_val); |
5516 | } |
5517 | else |
5518 | { |
5519 | result = new_array (BT_INTEGER, ikind, array->rank, &array->where); |
5520 | return simplify_minmaxloc_nodim (result, extremum, array, mask, |
5521 | sign, back_val); |
5522 | } |
5523 | } |
5524 | |
5525 | gfc_expr * |
5526 | gfc_simplify_minloc (gfc_expr *array, gfc_expr *dim, gfc_expr *mask, gfc_expr *kind, |
5527 | gfc_expr *back) |
5528 | { |
5529 | return gfc_simplify_minmaxloc (array, dim, mask, kind, back, -1); |
5530 | } |
5531 | |
5532 | gfc_expr * |
5533 | gfc_simplify_maxloc (gfc_expr *array, gfc_expr *dim, gfc_expr *mask, gfc_expr *kind, |
5534 | gfc_expr *back) |
5535 | { |
5536 | return gfc_simplify_minmaxloc (array, dim, mask, kind, back, 1); |
5537 | } |
5538 | |
5539 | /* Simplify findloc to scalar. Similar to |
5540 | simplify_minmaxloc_to_scalar. */ |
5541 | |
5542 | static gfc_expr * |
5543 | simplify_findloc_to_scalar (gfc_expr *result, gfc_expr *array, gfc_expr *value, |
5544 | gfc_expr *mask, int back_val) |
5545 | { |
5546 | gfc_expr *a, *m; |
5547 | gfc_constructor *array_ctor, *mask_ctor; |
5548 | mpz_t count; |
5549 | |
5550 | mpz_set_si__gmpz_set_si (result->value.integer, 0); |
5551 | |
5552 | /* Shortcut for constant .FALSE. MASK. */ |
5553 | if (mask |
5554 | && mask->expr_type == EXPR_CONSTANT |
5555 | && !mask->value.logical) |
5556 | return result; |
5557 | |
5558 | array_ctor = gfc_constructor_first (array->value.constructor); |
5559 | if (mask && mask->expr_type == EXPR_ARRAY) |
5560 | mask_ctor = gfc_constructor_first (mask->value.constructor); |
5561 | else |
5562 | mask_ctor = NULL__null; |
5563 | |
5564 | mpz_init_set_si__gmpz_init_set_si (count, 0); |
5565 | while (array_ctor) |
5566 | { |
5567 | mpz_add_ui__gmpz_add_ui (count, count, 1); |
5568 | a = array_ctor->expr; |
5569 | array_ctor = gfc_constructor_next (array_ctor); |
5570 | /* A constant MASK equals .TRUE. here and can be ignored. */ |
5571 | if (mask_ctor) |
5572 | { |
5573 | m = mask_ctor->expr; |
5574 | mask_ctor = gfc_constructor_next (mask_ctor); |
5575 | if (!m->value.logical) |
5576 | continue; |
5577 | } |
5578 | if (gfc_compare_expr (a, value, INTRINSIC_EQ) == 0) |
5579 | { |
5580 | /* We have a match. If BACK is true, continue so we find |
5581 | the last one. */ |
5582 | mpz_set__gmpz_set (result->value.integer, count); |
5583 | if (!back_val) |
5584 | break; |
5585 | } |
5586 | } |
5587 | mpz_clear__gmpz_clear (count); |
5588 | return result; |
5589 | } |
5590 | |
5591 | /* Simplify findloc in the absence of a dim argument. Similar to |
5592 | simplify_minmaxloc_nodim. */ |
5593 | |
5594 | static gfc_expr * |
5595 | simplify_findloc_nodim (gfc_expr *result, gfc_expr *value, gfc_expr *array, |
5596 | gfc_expr *mask, bool back_val) |
5597 | { |
5598 | ssize_t res[GFC_MAX_DIMENSIONS15]; |
5599 | int i, n; |
5600 | gfc_constructor *result_ctor, *array_ctor, *mask_ctor; |
5601 | ssize_t count[GFC_MAX_DIMENSIONS15], extent[GFC_MAX_DIMENSIONS15], |
5602 | sstride[GFC_MAX_DIMENSIONS15]; |
5603 | gfc_expr *a, *m; |
5604 | bool continue_loop; |
5605 | bool ma; |
5606 | |
5607 | for (i = 0; i < array->rank; i++) |
5608 | res[i] = -1; |
5609 | |
5610 | /* Shortcut for constant .FALSE. MASK. */ |
5611 | if (mask |
5612 | && mask->expr_type == EXPR_CONSTANT |
5613 | && !mask->value.logical) |
5614 | goto finish; |
5615 | |
5616 | for (i = 0; i < array->rank; i++) |
5617 | { |
5618 | count[i] = 0; |
5619 | sstride[i] = (i == 0) ? 1 : sstride[i-1] * mpz_get_si__gmpz_get_si (array->shape[i-1]); |
5620 | extent[i] = mpz_get_si__gmpz_get_si (array->shape[i]); |
5621 | if (extent[i] <= 0) |
5622 | goto finish; |
5623 | } |
5624 | |
5625 | continue_loop = true; |
5626 | array_ctor = gfc_constructor_first (array->value.constructor); |
5627 | if (mask && mask->rank > 0) |
5628 | mask_ctor = gfc_constructor_first (mask->value.constructor); |
5629 | else |
5630 | mask_ctor = NULL__null; |
5631 | |
5632 | /* Loop over the array elements (and mask), keeping track of |
5633 | the indices to return. */ |
5634 | while (continue_loop) |
5635 | { |
5636 | do |
5637 | { |
5638 | a = array_ctor->expr; |
5639 | if (mask_ctor) |
5640 | { |
5641 | m = mask_ctor->expr; |
5642 | ma = m->value.logical; |
5643 | mask_ctor = gfc_constructor_next (mask_ctor); |
5644 | } |
5645 | else |
5646 | ma = true; |
5647 | |
5648 | if (ma && gfc_compare_expr (a, value, INTRINSIC_EQ) == 0) |
5649 | { |
5650 | for (i = 0; i < array->rank; i++) |
5651 | res[i] = count[i]; |
5652 | if (!back_val) |
5653 | goto finish; |
5654 | } |
5655 | array_ctor = gfc_constructor_next (array_ctor); |
5656 | count[0] ++; |
5657 | } while (count[0] != extent[0]); |
5658 | n = 0; |
5659 | do |
5660 | { |
5661 | /* When we get to the end of a dimension, reset it and increment |
5662 | the next dimension. */ |
5663 | count[n] = 0; |
5664 | n++; |
5665 | if (n >= array->rank) |
5666 | { |
5667 | continue_loop = false; |
5668 | break; |
5669 | } |
5670 | else |
5671 | count[n] ++; |
5672 | } while (count[n] == extent[n]); |
5673 | } |
5674 | |
5675 | finish: |
5676 | result_ctor = gfc_constructor_first (result->value.constructor); |
5677 | for (i = 0; i < array->rank; i++) |
5678 | { |
5679 | gfc_expr *r_expr; |
5680 | r_expr = result_ctor->expr; |
5681 | mpz_set_si__gmpz_set_si (r_expr->value.integer, res[i] + 1); |
5682 | result_ctor = gfc_constructor_next (result_ctor); |
5683 | } |
5684 | return result; |
5685 | } |
5686 | |
5687 | |
5688 | /* Simplify findloc to an array. Similar to |
5689 | simplify_minmaxloc_to_array. */ |
5690 | |
5691 | static gfc_expr * |
5692 | simplify_findloc_to_array (gfc_expr *result, gfc_expr *array, gfc_expr *value, |
5693 | gfc_expr *dim, gfc_expr *mask, bool back_val) |
5694 | { |
5695 | mpz_t size; |
5696 | int done, i, n, arraysize, resultsize, dim_index, dim_extent, dim_stride; |
5697 | gfc_expr **arrayvec, **resultvec, **base, **src, **dest; |
5698 | gfc_constructor *array_ctor, *mask_ctor, *result_ctor; |
5699 | |
5700 | int count[GFC_MAX_DIMENSIONS15], extent[GFC_MAX_DIMENSIONS15], |
5701 | sstride[GFC_MAX_DIMENSIONS15], dstride[GFC_MAX_DIMENSIONS15], |
5702 | tmpstride[GFC_MAX_DIMENSIONS15]; |
5703 | |
5704 | /* Shortcut for constant .FALSE. MASK. */ |
5705 | if (mask |
5706 | && mask->expr_type == EXPR_CONSTANT |
5707 | && !mask->value.logical) |
5708 | return result; |
5709 | |
5710 | /* Build an indexed table for array element expressions to minimize |
5711 | linked-list traversal. Masked elements are set to NULL. */ |
5712 | gfc_array_size (array, &size); |
5713 | arraysize = mpz_get_ui__gmpz_get_ui (size); |
5714 | mpz_clear__gmpz_clear (size); |
5715 | |
5716 | arrayvec = XCNEWVEC (gfc_expr*, arraysize)((gfc_expr* *) xcalloc ((arraysize), sizeof (gfc_expr*))); |
5717 | |
5718 | array_ctor = gfc_constructor_first (array->value.constructor); |
5719 | mask_ctor = NULL__null; |
5720 | if (mask && mask->expr_type == EXPR_ARRAY) |
5721 | mask_ctor = gfc_constructor_first (mask->value.constructor); |
5722 | |
5723 | for (i = 0; i < arraysize; ++i) |
5724 | { |
5725 | arrayvec[i] = array_ctor->expr; |
5726 | array_ctor = gfc_constructor_next (array_ctor); |
5727 | |
5728 | if (mask_ctor) |
5729 | { |
5730 | if (!mask_ctor->expr->value.logical) |
5731 | arrayvec[i] = NULL__null; |
5732 | |
5733 | mask_ctor = gfc_constructor_next (mask_ctor); |
5734 | } |
5735 | } |
5736 | |
5737 | /* Same for the result expression. */ |
5738 | gfc_array_size (result, &size); |
5739 | resultsize = mpz_get_ui__gmpz_get_ui (size); |
5740 | mpz_clear__gmpz_clear (size); |
5741 | |
5742 | resultvec = XCNEWVEC (gfc_expr*, resultsize)((gfc_expr* *) xcalloc ((resultsize), sizeof (gfc_expr*))); |
5743 | result_ctor = gfc_constructor_first (result->value.constructor); |
5744 | for (i = 0; i < resultsize; ++i) |
5745 | { |
5746 | resultvec[i] = result_ctor->expr; |
5747 | result_ctor = gfc_constructor_next (result_ctor); |
5748 | } |
5749 | |
5750 | gfc_extract_int (dim, &dim_index); |
5751 | |
5752 | dim_index -= 1; /* Zero-base index. */ |
5753 | dim_extent = 0; |
5754 | dim_stride = 0; |
5755 | |
5756 | for (i = 0, n = 0; i < array->rank; ++i) |
5757 | { |
5758 | count[i] = 0; |
5759 | tmpstride[i] = (i == 0) ? 1 : tmpstride[i-1] * mpz_get_si__gmpz_get_si (array->shape[i-1]); |
5760 | if (i == dim_index) |
5761 | { |
5762 | dim_extent = mpz_get_si__gmpz_get_si (array->shape[i]); |
5763 | dim_stride = tmpstride[i]; |
5764 | continue; |
5765 | } |
5766 | |
5767 | extent[n] = mpz_get_si__gmpz_get_si (array->shape[i]); |
5768 | sstride[n] = tmpstride[i]; |
5769 | dstride[n] = (n == 0) ? 1 : dstride[n-1] * extent[n-1]; |
5770 | n += 1; |
5771 | } |
5772 | |
5773 | done = resultsize <= 0; |
5774 | base = arrayvec; |
5775 | dest = resultvec; |
5776 | while (!done) |
5777 | { |
5778 | for (src = base, n = 0; n < dim_extent; src += dim_stride, ++n) |
5779 | { |
5780 | if (*src && gfc_compare_expr (*src, value, INTRINSIC_EQ) == 0) |
5781 | { |
5782 | mpz_set_si__gmpz_set_si ((*dest)->value.integer, n + 1); |
5783 | if (!back_val) |
5784 | break; |
5785 | } |
5786 | } |
5787 | |
5788 | count[0]++; |
5789 | base += sstride[0]; |
5790 | dest += dstride[0]; |
5791 | |
5792 | n = 0; |
5793 | while (!done && count[n] == extent[n]) |
5794 | { |
5795 | count[n] = 0; |
5796 | base -= sstride[n] * extent[n]; |
5797 | dest -= dstride[n] * extent[n]; |
5798 | |
5799 | n++; |
5800 | if (n < result->rank) |
5801 | { |
5802 | /* If the nested loop is unrolled GFC_MAX_DIMENSIONS |
5803 | times, we'd warn for the last iteration, because the |
5804 | array index will have already been incremented to the |
5805 | array sizes, and we can't tell that this must make |
5806 | the test against result->rank false, because ranks |
5807 | must not exceed GFC_MAX_DIMENSIONS. */ |
5808 | GCC_DIAGNOSTIC_PUSH_IGNORED (-Warray-bounds) |
5809 | count[n]++; |
5810 | base += sstride[n]; |
5811 | dest += dstride[n]; |
5812 | GCC_DIAGNOSTIC_POP |
5813 | } |
5814 | else |
5815 | done = true; |
5816 | } |
5817 | } |
5818 | |
5819 | /* Place updated expression in result constructor. */ |
5820 | result_ctor = gfc_constructor_first (result->value.constructor); |
5821 | for (i = 0; i < resultsize; ++i) |
5822 | { |
5823 | result_ctor->expr = resultvec[i]; |
5824 | result_ctor = gfc_constructor_next (result_ctor); |
5825 | } |
5826 | |
5827 | free (arrayvec); |
5828 | free (resultvec); |
5829 | return result; |
5830 | } |
5831 | |
5832 | /* Simplify findloc. */ |
5833 | |
5834 | gfc_expr * |
5835 | gfc_simplify_findloc (gfc_expr *array, gfc_expr *value, gfc_expr *dim, |
5836 | gfc_expr *mask, gfc_expr *kind, gfc_expr *back) |
5837 | { |
5838 | gfc_expr *result; |
5839 | int ikind; |
5840 | bool back_val = false; |
5841 | |
5842 | if (!is_constant_array_expr (array) |
5843 | || !gfc_is_constant_expr (dim)) |
5844 | return NULL__null; |
5845 | |
5846 | if (! gfc_is_constant_expr (value)) |
5847 | return 0; |
5848 | |
5849 | if (mask |
5850 | && !is_constant_array_expr (mask) |
5851 | && mask->expr_type != EXPR_CONSTANT) |
5852 | return NULL__null; |
5853 | |
5854 | if (kind) |
5855 | { |
5856 | if (gfc_extract_int (kind, &ikind, -1)) |
5857 | return NULL__null; |
5858 | } |
5859 | else |
5860 | ikind = gfc_default_integer_kind; |
5861 | |
5862 | if (back) |
5863 | { |
5864 | if (back->expr_type != EXPR_CONSTANT) |
5865 | return NULL__null; |
5866 | |
5867 | back_val = back->value.logical; |
5868 | } |
5869 | |
5870 | if (dim) |
5871 | { |
5872 | result = transformational_result (array, dim, BT_INTEGER, |
5873 | ikind, &array->where); |
5874 | init_result_expr (result, 0, array); |
5875 | |
5876 | if (array->rank == 1) |
5877 | return simplify_findloc_to_scalar (result, array, value, mask, |
5878 | back_val); |
5879 | else |
5880 | return simplify_findloc_to_array (result, array, value, dim, mask, |
5881 | back_val); |
5882 | } |
5883 | else |
5884 | { |
5885 | result = new_array (BT_INTEGER, ikind, array->rank, &array->where); |
5886 | return simplify_findloc_nodim (result, value, array, mask, back_val); |
5887 | } |
5888 | return NULL__null; |
5889 | } |
5890 | |
5891 | gfc_expr * |
5892 | gfc_simplify_maxexponent (gfc_expr *x) |
5893 | { |
5894 | int i = gfc_validate_kind (BT_REAL, x->ts.kind, false); |
5895 | return gfc_get_int_expr (gfc_default_integer_kind, &x->where, |
5896 | gfc_real_kinds[i].max_exponent); |
5897 | } |
5898 | |
5899 | |
5900 | gfc_expr * |
5901 | gfc_simplify_minexponent (gfc_expr *x) |
5902 | { |
5903 | int i = gfc_validate_kind (BT_REAL, x->ts.kind, false); |
5904 | return gfc_get_int_expr (gfc_default_integer_kind, &x->where, |
5905 | gfc_real_kinds[i].min_exponent); |
5906 | } |
5907 | |
5908 | |
5909 | gfc_expr * |
5910 | gfc_simplify_mod (gfc_expr *a, gfc_expr *p) |
5911 | { |
5912 | gfc_expr *result; |
5913 | int kind; |
5914 | |
5915 | /* First check p. */ |
5916 | if (p->expr_type != EXPR_CONSTANT) |
5917 | return NULL__null; |
5918 | |
5919 | /* p shall not be 0. */ |
5920 | switch (p->ts.type) |
5921 | { |
5922 | case BT_INTEGER: |
5923 | if (mpz_cmp_ui (p->value.integer, 0)(__builtin_constant_p (0) && (0) == 0 ? ((p->value .integer)->_mp_size < 0 ? -1 : (p->value.integer)-> _mp_size > 0) : __gmpz_cmp_ui (p->value.integer,0)) == 0) |
5924 | { |
5925 | gfc_error ("Argument %qs of MOD at %L shall not be zero", |
5926 | "P", &p->where); |
5927 | return &gfc_bad_expr; |
5928 | } |
5929 | break; |
5930 | case BT_REAL: |
5931 | if (mpfr_cmp_ui (p->value.real, 0)mpfr_cmp_ui_2exp((p->value.real),(0),0) == 0) |
5932 | { |
5933 | gfc_error ("Argument %qs of MOD at %L shall not be zero", |
5934 | "P", &p->where); |
5935 | return &gfc_bad_expr; |
5936 | } |
5937 | break; |
5938 | default: |
5939 | gfc_internal_error ("gfc_simplify_mod(): Bad arguments"); |
5940 | } |
5941 | |
5942 | if (a->expr_type != EXPR_CONSTANT) |
5943 | return NULL__null; |
5944 | |
5945 | kind = a->ts.kind > p->ts.kind ? a->ts.kind : p->ts.kind; |
5946 | result = gfc_get_constant_expr (a->ts.type, kind, &a->where); |
5947 | |
5948 | if (a->ts.type == BT_INTEGER) |
5949 | mpz_tdiv_r__gmpz_tdiv_r (result->value.integer, a->value.integer, p->value.integer); |
5950 | else |
5951 | { |
5952 | gfc_set_model_kind (kind); |
5953 | mpfr_fmod (result->value.real, a->value.real, p->value.real, |
5954 | GFC_RND_MODEMPFR_RNDN); |
5955 | } |
5956 | |
5957 | return range_check (result, "MOD"); |
5958 | } |
5959 | |
5960 | |
5961 | gfc_expr * |
5962 | gfc_simplify_modulo (gfc_expr *a, gfc_expr *p) |
5963 | { |
5964 | gfc_expr *result; |
5965 | int kind; |
5966 | |
5967 | /* First check p. */ |
5968 | if (p->expr_type != EXPR_CONSTANT) |
5969 | return NULL__null; |
5970 | |
5971 | /* p shall not be 0. */ |
5972 | switch (p->ts.type) |
5973 | { |
5974 | case BT_INTEGER: |
5975 | if (mpz_cmp_ui (p->value.integer, 0)(__builtin_constant_p (0) && (0) == 0 ? ((p->value .integer)->_mp_size < 0 ? -1 : (p->value.integer)-> _mp_size > 0) : __gmpz_cmp_ui (p->value.integer,0)) == 0) |
5976 | { |
5977 | gfc_error ("Argument %qs of MODULO at %L shall not be zero", |
5978 | "P", &p->where); |
5979 | return &gfc_bad_expr; |
5980 | } |
5981 | break; |
5982 | case BT_REAL: |
5983 | if (mpfr_cmp_ui (p->value.real, 0)mpfr_cmp_ui_2exp((p->value.real),(0),0) == 0) |
5984 | { |
5985 | gfc_error ("Argument %qs of MODULO at %L shall not be zero", |
5986 | "P", &p->where); |
5987 | return &gfc_bad_expr; |
5988 | } |
5989 | break; |
5990 | default: |
5991 | gfc_internal_error ("gfc_simplify_modulo(): Bad arguments"); |
5992 | } |
5993 | |
5994 | if (a->expr_type != EXPR_CONSTANT) |
5995 | return NULL__null; |
5996 | |
5997 | kind = a->ts.kind > p->ts.kind ? a->ts.kind : p->ts.kind; |
5998 | result = gfc_get_constant_expr (a->ts.type, kind, &a->where); |
5999 | |
6000 | if (a->ts.type == BT_INTEGER) |
6001 | mpz_fdiv_r__gmpz_fdiv_r (result->value.integer, a->value.integer, p->value.integer); |
6002 | else |
6003 | { |
6004 | gfc_set_model_kind (kind); |
6005 | mpfr_fmod (result->value.real, a->value.real, p->value.real, |
6006 | GFC_RND_MODEMPFR_RNDN); |
6007 | if (mpfr_cmp_ui (result->value.real, 0)mpfr_cmp_ui_2exp((result->value.real),(0),0) != 0) |
6008 | { |
6009 | if (mpfr_signbit (a->value.real)(((a->value.real)->_mpfr_sign) < 0) != mpfr_signbit (p->value.real)(((p->value.real)->_mpfr_sign) < 0)) |
6010 | mpfr_add (result->value.real, result->value.real, p->value.real, |
6011 | GFC_RND_MODEMPFR_RNDN); |
6012 | } |
6013 | else |
6014 | mpfr_copysign (result->value.real, result->value.real,mpfr_set4(result->value.real,result->value.real,MPFR_RNDN ,((p->value.real)->_mpfr_sign)) |
6015 | p->value.real, GFC_RND_MODE)mpfr_set4(result->value.real,result->value.real,MPFR_RNDN ,((p->value.real)->_mpfr_sign)); |
6016 | } |
6017 | |
6018 | return range_check (result, "MODULO"); |
6019 | } |
6020 | |
6021 | |
6022 | gfc_expr * |
6023 | gfc_simplify_nearest (gfc_expr *x, gfc_expr *s) |
6024 | { |
6025 | gfc_expr *result; |
6026 | mpfr_exp_t emin, emax; |
6027 | int kind; |
6028 | |
6029 | if (x->expr_type != EXPR_CONSTANT || s->expr_type != EXPR_CONSTANT) |
6030 | return NULL__null; |
6031 | |
6032 | result = gfc_copy_expr (x); |
6033 | |
6034 | /* Save current values of emin and emax. */ |
6035 | emin = mpfr_get_emin (); |
6036 | emax = mpfr_get_emax (); |
6037 | |
6038 | /* Set emin and emax for the current model number. */ |
6039 | kind = gfc_validate_kind (BT_REAL, x->ts.kind, 0); |
6040 | mpfr_set_emin ((mpfr_exp_t) gfc_real_kinds[kind].min_exponent - |
6041 | mpfr_get_prec(result->value.real)(0 ? ((result->value.real)->_mpfr_prec) : ((result-> value.real)->_mpfr_prec)) + 1); |
6042 | mpfr_set_emax ((mpfr_exp_t) gfc_real_kinds[kind].max_exponent - 1); |
6043 | mpfr_check_range (result->value.real, 0, MPFR_RNDU); |
6044 | |
6045 | if (mpfr_sgn (s->value.real)((s->value.real)->_mpfr_exp < (2 - ((mpfr_exp_t) ((( mpfr_uexp_t) -1) >> 1))) ? (((s->value.real)->_mpfr_exp == (1 - ((mpfr_exp_t) (((mpfr_uexp_t) -1) >> 1)))) ? mpfr_set_erangeflag () : (mpfr_void) 0), 0 : ((s->value.real)->_mpfr_sign) ) > 0) |
6046 | { |
6047 | mpfr_nextabove (result->value.real); |
6048 | mpfr_subnormalize (result->value.real, 0, MPFR_RNDU); |
6049 | } |
6050 | else |
6051 | { |
6052 | mpfr_nextbelow (result->value.real); |
6053 | mpfr_subnormalize (result->value.real, 0, MPFR_RNDD); |
6054 | } |
6055 | |
6056 | mpfr_set_emin (emin); |
6057 | mpfr_set_emax (emax); |
6058 | |
6059 | /* Only NaN can occur. Do not use range check as it gives an |
6060 | error for denormal numbers. */ |
6061 | if (mpfr_nan_p (result->value.real)((result->value.real)->_mpfr_exp == (1 - ((mpfr_exp_t) ( ((mpfr_uexp_t) -1) >> 1)))) && flag_range_checkglobal_options.x_flag_range_check) |
6062 | { |
6063 | gfc_error ("Result of NEAREST is NaN at %L", &result->where); |
6064 | gfc_free_expr (result); |
6065 | return &gfc_bad_expr; |
6066 | } |
6067 | |
6068 | return result; |
6069 | } |
6070 | |
6071 | |
6072 | static gfc_expr * |
6073 | simplify_nint (const char *name, gfc_expr *e, gfc_expr *k) |
6074 | { |
6075 | gfc_expr *itrunc, *result; |
6076 | int kind; |
6077 | |
6078 | kind = get_kind (BT_INTEGER, k, name, gfc_default_integer_kind); |
6079 | if (kind == -1) |
6080 | return &gfc_bad_expr; |
6081 | |
6082 | if (e->expr_type != EXPR_CONSTANT) |
6083 | return NULL__null; |
6084 | |
6085 | itrunc = gfc_copy_expr (e); |
6086 | mpfr_round (itrunc->value.real, e->value.real)mpfr_rint((itrunc->value.real), (e->value.real), MPFR_RNDNA ); |
6087 | |
6088 | result = gfc_get_constant_expr (BT_INTEGER, kind, &e->where); |
6089 | gfc_mpfr_to_mpz (result->value.integer, itrunc->value.real, &e->where); |
6090 | |
6091 | gfc_free_expr (itrunc); |
6092 | |
6093 | return range_check (result, name); |
6094 | } |
6095 | |
6096 | |
6097 | gfc_expr * |
6098 | gfc_simplify_new_line (gfc_expr *e) |
6099 | { |
6100 | gfc_expr *result; |
6101 | |
6102 | result = gfc_get_character_expr (e->ts.kind, &e->where, NULL__null, 1); |
6103 | result->value.character.string[0] = '\n'; |
6104 | |
6105 | return result; |
6106 | } |
6107 | |
6108 | |
6109 | gfc_expr * |
6110 | gfc_simplify_nint (gfc_expr *e, gfc_expr *k) |
6111 | { |
6112 | return simplify_nint ("NINT", e, k); |
6113 | } |
6114 | |
6115 | |
6116 | gfc_expr * |
6117 | gfc_simplify_idnint (gfc_expr *e) |
6118 | { |
6119 | return simplify_nint ("IDNINT", e, NULL__null); |
6120 | } |
6121 | |
6122 | static int norm2_scale; |
6123 | |
6124 | static gfc_expr * |
6125 | norm2_add_squared (gfc_expr *result, gfc_expr *e) |
6126 | { |
6127 | mpfr_t tmp; |
6128 | |
6129 | gcc_assert (e->ts.type == BT_REAL && e->expr_type == EXPR_CONSTANT)((void)(!(e->ts.type == BT_REAL && e->expr_type == EXPR_CONSTANT) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 6129, __FUNCTION__), 0 : 0)); |
6130 | gcc_assert (result->ts.type == BT_REAL((void)(!(result->ts.type == BT_REAL && result-> expr_type == EXPR_CONSTANT) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 6131, __FUNCTION__), 0 : 0)) |
6131 | && result->expr_type == EXPR_CONSTANT)((void)(!(result->ts.type == BT_REAL && result-> expr_type == EXPR_CONSTANT) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 6131, __FUNCTION__), 0 : 0)); |
6132 | |
6133 | gfc_set_model_kind (result->ts.kind); |
6134 | int index = gfc_validate_kind (BT_REAL, result->ts.kind, false); |
6135 | mpfr_exp_t exp; |
6136 | if (mpfr_regular_p (result->value.real)((result->value.real)->_mpfr_exp > (2 - ((mpfr_exp_t ) (((mpfr_uexp_t) -1) >> 1))))) |
6137 | { |
6138 | exp = mpfr_get_exp (result->value.real)(0 ? ((result->value.real)->_mpfr_exp) : ((result->value .real)->_mpfr_exp)); |
6139 | /* If result is getting close to overflowing, scale down. */ |
6140 | if (exp >= gfc_real_kinds[index].max_exponent - 4 |
6141 | && norm2_scale <= gfc_real_kinds[index].max_exponent - 2) |
6142 | { |
6143 | norm2_scale += 2; |
6144 | mpfr_div_ui (result->value.real, result->value.real, 16, |
6145 | GFC_RND_MODEMPFR_RNDN); |
6146 | } |
6147 | } |
6148 | |
6149 | mpfr_init (tmp); |
6150 | if (mpfr_regular_p (e->value.real)((e->value.real)->_mpfr_exp > (2 - ((mpfr_exp_t) ((( mpfr_uexp_t) -1) >> 1))))) |
6151 | { |
6152 | exp = mpfr_get_exp (e->value.real)(0 ? ((e->value.real)->_mpfr_exp) : ((e->value.real) ->_mpfr_exp)); |
6153 | /* If e**2 would overflow or close to overflowing, scale down. */ |
6154 | if (exp - norm2_scale >= gfc_real_kinds[index].max_exponent / 2 - 2) |
6155 | { |
6156 | int new_scale = gfc_real_kinds[index].max_exponent / 2 + 4; |
6157 | mpfr_set_ui (tmp, 1, GFC_RND_MODEMPFR_RNDN); |
6158 | mpfr_set_exp (tmp, new_scale - norm2_scale); |
6159 | mpfr_div (result->value.real, result->value.real, tmp, GFC_RND_MODEMPFR_RNDN); |
6160 | mpfr_div (result->value.real, result->value.real, tmp, GFC_RND_MODEMPFR_RNDN); |
6161 | norm2_scale = new_scale; |
6162 | } |
6163 | } |
6164 | if (norm2_scale) |
6165 | { |
6166 | mpfr_set_ui (tmp, 1, GFC_RND_MODEMPFR_RNDN); |
6167 | mpfr_set_exp (tmp, norm2_scale); |
6168 | mpfr_div (tmp, e->value.real, tmp, GFC_RND_MODEMPFR_RNDN); |
6169 | } |
6170 | else |
6171 | mpfr_set (tmp, e->value.real, GFC_RND_MODE)mpfr_set4(tmp,e->value.real,MPFR_RNDN,((e->value.real)-> _mpfr_sign)); |
6172 | mpfr_pow_ui (tmp, tmp, 2, GFC_RND_MODEMPFR_RNDN); |
6173 | mpfr_add (result->value.real, result->value.real, tmp, |
6174 | GFC_RND_MODEMPFR_RNDN); |
6175 | mpfr_clear (tmp); |
6176 | |
6177 | return result; |
6178 | } |
6179 | |
6180 | |
6181 | static gfc_expr * |
6182 | norm2_do_sqrt (gfc_expr *result, gfc_expr *e) |
6183 | { |
6184 | gcc_assert (e->ts.type == BT_REAL && e->expr_type == EXPR_CONSTANT)((void)(!(e->ts.type == BT_REAL && e->expr_type == EXPR_CONSTANT) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 6184, __FUNCTION__), 0 : 0)); |
6185 | gcc_assert (result->ts.type == BT_REAL((void)(!(result->ts.type == BT_REAL && result-> expr_type == EXPR_CONSTANT) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 6186, __FUNCTION__), 0 : 0)) |
6186 | && result->expr_type == EXPR_CONSTANT)((void)(!(result->ts.type == BT_REAL && result-> expr_type == EXPR_CONSTANT) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 6186, __FUNCTION__), 0 : 0)); |
6187 | |
6188 | if (result != e) |
6189 | mpfr_set (result->value.real, e->value.real, GFC_RND_MODE)mpfr_set4(result->value.real,e->value.real,MPFR_RNDN,(( e->value.real)->_mpfr_sign)); |
6190 | mpfr_sqrt (result->value.real, result->value.real, GFC_RND_MODEMPFR_RNDN); |
6191 | if (norm2_scale && mpfr_regular_p (result->value.real)((result->value.real)->_mpfr_exp > (2 - ((mpfr_exp_t ) (((mpfr_uexp_t) -1) >> 1))))) |
6192 | { |
6193 | mpfr_t tmp; |
6194 | mpfr_init (tmp); |
6195 | mpfr_set_ui (tmp, 1, GFC_RND_MODEMPFR_RNDN); |
6196 | mpfr_set_exp (tmp, norm2_scale); |
6197 | mpfr_mul (result->value.real, result->value.real, tmp, GFC_RND_MODEMPFR_RNDN); |
6198 | mpfr_clear (tmp); |
6199 | } |
6200 | norm2_scale = 0; |
6201 | |
6202 | return result; |
6203 | } |
6204 | |
6205 | |
6206 | gfc_expr * |
6207 | gfc_simplify_norm2 (gfc_expr *e, gfc_expr *dim) |
6208 | { |
6209 | gfc_expr *result; |
6210 | bool size_zero; |
6211 | |
6212 | size_zero = gfc_is_size_zero_array (e); |
6213 | |
6214 | if (!(is_constant_array_expr (e) || size_zero) |
6215 | || (dim != NULL__null && !gfc_is_constant_expr (dim))) |
6216 | return NULL__null; |
6217 | |
6218 | result = transformational_result (e, dim, e->ts.type, e->ts.kind, &e->where); |
6219 | init_result_expr (result, 0, NULL__null); |
6220 | |
6221 | if (size_zero) |
6222 | return result; |
6223 | |
6224 | norm2_scale = 0; |
6225 | if (!dim || e->rank == 1) |
6226 | { |
6227 | result = simplify_transformation_to_scalar (result, e, NULL__null, |
6228 | norm2_add_squared); |
6229 | mpfr_sqrt (result->value.real, result->value.real, GFC_RND_MODEMPFR_RNDN); |
6230 | if (norm2_scale && mpfr_regular_p (result->value.real)((result->value.real)->_mpfr_exp > (2 - ((mpfr_exp_t ) (((mpfr_uexp_t) -1) >> 1))))) |
6231 | { |
6232 | mpfr_t tmp; |
6233 | mpfr_init (tmp); |
6234 | mpfr_set_ui (tmp, 1, GFC_RND_MODEMPFR_RNDN); |
6235 | mpfr_set_exp (tmp, norm2_scale); |
6236 | mpfr_mul (result->value.real, result->value.real, tmp, GFC_RND_MODEMPFR_RNDN); |
6237 | mpfr_clear (tmp); |
6238 | } |
6239 | norm2_scale = 0; |
6240 | } |
6241 | else |
6242 | result = simplify_transformation_to_array (result, e, dim, NULL__null, |
6243 | norm2_add_squared, |
6244 | norm2_do_sqrt); |
6245 | |
6246 | return result; |
6247 | } |
6248 | |
6249 | |
6250 | gfc_expr * |
6251 | gfc_simplify_not (gfc_expr *e) |
6252 | { |
6253 | gfc_expr *result; |
6254 | |
6255 | if (e->expr_type != EXPR_CONSTANT) |
6256 | return NULL__null; |
6257 | |
6258 | result = gfc_get_constant_expr (e->ts.type, e->ts.kind, &e->where); |
6259 | mpz_com__gmpz_com (result->value.integer, e->value.integer); |
6260 | |
6261 | return range_check (result, "NOT"); |
6262 | } |
6263 | |
6264 | |
6265 | gfc_expr * |
6266 | gfc_simplify_null (gfc_expr *mold) |
6267 | { |
6268 | gfc_expr *result; |
6269 | |
6270 | if (mold) |
6271 | { |
6272 | result = gfc_copy_expr (mold); |
6273 | result->expr_type = EXPR_NULL; |
6274 | } |
6275 | else |
6276 | result = gfc_get_null_expr (NULL__null); |
6277 | |
6278 | return result; |
6279 | } |
6280 | |
6281 | |
6282 | gfc_expr * |
6283 | gfc_simplify_num_images (gfc_expr *distance ATTRIBUTE_UNUSED__attribute__ ((__unused__)), gfc_expr *failed) |
6284 | { |
6285 | gfc_expr *result; |
6286 | |
6287 | if (flag_coarrayglobal_options.x_flag_coarray == GFC_FCOARRAY_NONE) |
6288 | { |
6289 | gfc_fatal_error ("Coarrays disabled at %C, use %<-fcoarray=%> to enable"); |
6290 | return &gfc_bad_expr; |
6291 | } |
6292 | |
6293 | if (flag_coarrayglobal_options.x_flag_coarray != GFC_FCOARRAY_SINGLE) |
6294 | return NULL__null; |
6295 | |
6296 | if (failed && failed->expr_type != EXPR_CONSTANT) |
6297 | return NULL__null; |
6298 | |
6299 | /* FIXME: gfc_current_locus is wrong. */ |
6300 | result = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind, |
6301 | &gfc_current_locus); |
6302 | |
6303 | if (failed && failed->value.logical != 0) |
6304 | mpz_set_si__gmpz_set_si (result->value.integer, 0); |
6305 | else |
6306 | mpz_set_si__gmpz_set_si (result->value.integer, 1); |
6307 | |
6308 | return result; |
6309 | } |
6310 | |
6311 | |
6312 | gfc_expr * |
6313 | gfc_simplify_or (gfc_expr *x, gfc_expr *y) |
6314 | { |
6315 | gfc_expr *result; |
6316 | int kind; |
6317 | |
6318 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) |
6319 | return NULL__null; |
6320 | |
6321 | kind = x->ts.kind > y->ts.kind ? x->ts.kind : y->ts.kind; |
6322 | |
6323 | switch (x->ts.type) |
6324 | { |
6325 | case BT_INTEGER: |
6326 | result = gfc_get_constant_expr (BT_INTEGER, kind, &x->where); |
6327 | mpz_ior__gmpz_ior (result->value.integer, x->value.integer, y->value.integer); |
6328 | return range_check (result, "OR"); |
6329 | |
6330 | case BT_LOGICAL: |
6331 | return gfc_get_logical_expr (kind, &x->where, |
6332 | x->value.logical || y->value.logical); |
6333 | default: |
6334 | gcc_unreachable()(fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 6334, __FUNCTION__)); |
6335 | } |
6336 | } |
6337 | |
6338 | |
6339 | gfc_expr * |
6340 | gfc_simplify_pack (gfc_expr *array, gfc_expr *mask, gfc_expr *vector) |
6341 | { |
6342 | gfc_expr *result; |
6343 | gfc_constructor *array_ctor, *mask_ctor, *vector_ctor; |
6344 | |
6345 | if (!is_constant_array_expr (array) |
6346 | || !is_constant_array_expr (vector) |
6347 | || (!gfc_is_constant_expr (mask) |
6348 | && !is_constant_array_expr (mask))) |
6349 | return NULL__null; |
6350 | |
6351 | result = gfc_get_array_expr (array->ts.type, array->ts.kind, &array->where); |
6352 | if (array->ts.type == BT_DERIVED) |
6353 | result->ts.u.derived = array->ts.u.derived; |
6354 | |
6355 | array_ctor = gfc_constructor_first (array->value.constructor); |
6356 | vector_ctor = vector |
6357 | ? gfc_constructor_first (vector->value.constructor) |
6358 | : NULL__null; |
6359 | |
6360 | if (mask->expr_type == EXPR_CONSTANT |
6361 | && mask->value.logical) |
6362 | { |
6363 | /* Copy all elements of ARRAY to RESULT. */ |
6364 | while (array_ctor) |
6365 | { |
6366 | gfc_constructor_append_expr (&result->value.constructor, |
6367 | gfc_copy_expr (array_ctor->expr), |
6368 | NULL__null); |
6369 | |
6370 | array_ctor = gfc_constructor_next (array_ctor); |
6371 | vector_ctor = gfc_constructor_next (vector_ctor); |
6372 | } |
6373 | } |
6374 | else if (mask->expr_type == EXPR_ARRAY) |
6375 | { |
6376 | /* Copy only those elements of ARRAY to RESULT whose |
6377 | MASK equals .TRUE.. */ |
6378 | mask_ctor = gfc_constructor_first (mask->value.constructor); |
6379 | while (mask_ctor) |
6380 | { |
6381 | if (mask_ctor->expr->value.logical) |
6382 | { |
6383 | gfc_constructor_append_expr (&result->value.constructor, |
6384 | gfc_copy_expr (array_ctor->expr), |
6385 | NULL__null); |
6386 | vector_ctor = gfc_constructor_next (vector_ctor); |
6387 | } |
6388 | |
6389 | array_ctor = gfc_constructor_next (array_ctor); |
6390 | mask_ctor = gfc_constructor_next (mask_ctor); |
6391 | } |
6392 | } |
6393 | |
6394 | /* Append any left-over elements from VECTOR to RESULT. */ |
6395 | while (vector_ctor) |
6396 | { |
6397 | gfc_constructor_append_expr (&result->value.constructor, |
6398 | gfc_copy_expr (vector_ctor->expr), |
6399 | NULL__null); |
6400 | vector_ctor = gfc_constructor_next (vector_ctor); |
6401 | } |
6402 | |
6403 | result->shape = gfc_get_shape (1)(((mpz_t *) xcalloc (((1)), sizeof (mpz_t)))); |
6404 | gfc_array_size (result, &result->shape[0]); |
6405 | |
6406 | if (array->ts.type == BT_CHARACTER) |
6407 | result->ts.u.cl = array->ts.u.cl; |
6408 | |
6409 | return result; |
6410 | } |
6411 | |
6412 | |
6413 | static gfc_expr * |
6414 | do_xor (gfc_expr *result, gfc_expr *e) |
6415 | { |
6416 | gcc_assert (e->ts.type == BT_LOGICAL && e->expr_type == EXPR_CONSTANT)((void)(!(e->ts.type == BT_LOGICAL && e->expr_type == EXPR_CONSTANT) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 6416, __FUNCTION__), 0 : 0)); |
6417 | gcc_assert (result->ts.type == BT_LOGICAL((void)(!(result->ts.type == BT_LOGICAL && result-> expr_type == EXPR_CONSTANT) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 6418, __FUNCTION__), 0 : 0)) |
6418 | && result->expr_type == EXPR_CONSTANT)((void)(!(result->ts.type == BT_LOGICAL && result-> expr_type == EXPR_CONSTANT) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 6418, __FUNCTION__), 0 : 0)); |
6419 | |
6420 | result->value.logical = result->value.logical != e->value.logical; |
6421 | return result; |
6422 | } |
6423 | |
6424 | |
6425 | gfc_expr * |
6426 | gfc_simplify_is_contiguous (gfc_expr *array) |
6427 | { |
6428 | if (gfc_is_simply_contiguous (array, false, true)) |
6429 | return gfc_get_logical_expr (gfc_default_logical_kind, &array->where, 1); |
6430 | |
6431 | if (gfc_is_not_contiguous (array)) |
6432 | return gfc_get_logical_expr (gfc_default_logical_kind, &array->where, 0); |
6433 | |
6434 | return NULL__null; |
6435 | } |
6436 | |
6437 | |
6438 | gfc_expr * |
6439 | gfc_simplify_parity (gfc_expr *e, gfc_expr *dim) |
6440 | { |
6441 | return simplify_transformation (e, dim, NULL__null, 0, do_xor); |
6442 | } |
6443 | |
6444 | |
6445 | gfc_expr * |
6446 | gfc_simplify_popcnt (gfc_expr *e) |
6447 | { |
6448 | int res, k; |
6449 | mpz_t x; |
6450 | |
6451 | if (e->expr_type != EXPR_CONSTANT) |
6452 | return NULL__null; |
6453 | |
6454 | k = gfc_validate_kind (e->ts.type, e->ts.kind, false); |
6455 | |
6456 | /* Convert argument to unsigned, then count the '1' bits. */ |
6457 | mpz_init_set__gmpz_init_set (x, e->value.integer); |
6458 | convert_mpz_to_unsigned (x, gfc_integer_kinds[k].bit_size); |
6459 | res = mpz_popcount__gmpz_popcount (x); |
6460 | mpz_clear__gmpz_clear (x); |
6461 | |
6462 | return gfc_get_int_expr (gfc_default_integer_kind, &e->where, res); |
6463 | } |
6464 | |
6465 | |
6466 | gfc_expr * |
6467 | gfc_simplify_poppar (gfc_expr *e) |
6468 | { |
6469 | gfc_expr *popcnt; |
6470 | int i; |
6471 | |
6472 | if (e->expr_type != EXPR_CONSTANT) |
6473 | return NULL__null; |
6474 | |
6475 | popcnt = gfc_simplify_popcnt (e); |
6476 | gcc_assert (popcnt)((void)(!(popcnt) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 6476, __FUNCTION__), 0 : 0)); |
6477 | |
6478 | bool fail = gfc_extract_int (popcnt, &i); |
6479 | gcc_assert (!fail)((void)(!(!fail) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 6479, __FUNCTION__), 0 : 0)); |
6480 | |
6481 | return gfc_get_int_expr (gfc_default_integer_kind, &e->where, i % 2); |
6482 | } |
6483 | |
6484 | |
6485 | gfc_expr * |
6486 | gfc_simplify_precision (gfc_expr *e) |
6487 | { |
6488 | int i = gfc_validate_kind (e->ts.type, e->ts.kind, false); |
6489 | return gfc_get_int_expr (gfc_default_integer_kind, &e->where, |
6490 | gfc_real_kinds[i].precision); |
6491 | } |
6492 | |
6493 | |
6494 | gfc_expr * |
6495 | gfc_simplify_product (gfc_expr *array, gfc_expr *dim, gfc_expr *mask) |
6496 | { |
6497 | return simplify_transformation (array, dim, mask, 1, gfc_multiply); |
6498 | } |
6499 | |
6500 | |
6501 | gfc_expr * |
6502 | gfc_simplify_radix (gfc_expr *e) |
6503 | { |
6504 | int i; |
6505 | i = gfc_validate_kind (e->ts.type, e->ts.kind, false); |
6506 | |
6507 | switch (e->ts.type) |
6508 | { |
6509 | case BT_INTEGER: |
6510 | i = gfc_integer_kinds[i].radix; |
6511 | break; |
6512 | |
6513 | case BT_REAL: |
6514 | i = gfc_real_kinds[i].radix; |
6515 | break; |
6516 | |
6517 | default: |
6518 | gcc_unreachable ()(fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 6518, __FUNCTION__)); |
6519 | } |
6520 | |
6521 | return gfc_get_int_expr (gfc_default_integer_kind, &e->where, i); |
6522 | } |
6523 | |
6524 | |
6525 | gfc_expr * |
6526 | gfc_simplify_range (gfc_expr *e) |
6527 | { |
6528 | int i; |
6529 | i = gfc_validate_kind (e->ts.type, e->ts.kind, false); |
6530 | |
6531 | switch (e->ts.type) |
6532 | { |
6533 | case BT_INTEGER: |
6534 | i = gfc_integer_kinds[i].range; |
6535 | break; |
6536 | |
6537 | case BT_REAL: |
6538 | case BT_COMPLEX: |
6539 | i = gfc_real_kinds[i].range; |
6540 | break; |
6541 | |
6542 | default: |
6543 | gcc_unreachable ()(fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.c" , 6543, __FUNCTION__)); |
6544 | } |
6545 | |
6546 | return gfc_get_int_expr (gfc_default_integer_kind, &e->where, i); |
6547 | } |
6548 | |
6549 | |
6550 | gfc_expr * |
6551 | gfc_simplify_rank (gfc_expr *e) |
6552 | { |
6553 | /* Assumed rank. */ |
6554 | if (e->rank == -1) |
6555 | return NULL__null; |
6556 | |
6557 | return gfc_get_int_expr (gfc_default_integer_kind, &e->where, e->rank); |
6558 | } |
6559 | |
6560 | |
6561 | gfc_expr * |
6562 | gfc_simplify_real (gfc_expr *e, gfc_expr *k) |
6563 | { |
6564 | gfc_expr *result = NULL__null; |
6565 | int kind, tmp1, tmp2; |
6566 | |
6567 | /* Convert BOZ to real, and return without range checking. */ |
6568 | if (e->ts.type == BT_BOZ) |
6569 | { |
6570 | /* Determine kind for conversion of the BOZ. */ |
6571 | if (k) |
6572 | gfc_extract_int (k, &kind); |
6573 | else |
6574 | kind = gfc_default_real_kind; |
6575 | |
6576 | if (!gfc_boz2real (e, kind)) |
6577 | return NULL__null; |
6578 | result = gfc_copy_expr (e); |
6579 | return result; |
6580 | } |
6581 | |
6582 | if (e->ts.type == BT_COMPLEX) |
6583 | kind = get_kind (BT_REAL, k, "REAL", e->ts.kind); |
6584 | else |
6585 | kind = get_kind (BT_REAL, k, "REAL", gfc_default_real_kind); |
6586 | |
6587 | if (kind == -1) |
6588 | return &gfc_bad_expr; |
6589 | |
6590 | if (e->expr_type != EXPR_CONSTANT) |
6591 | return NULL__null; |
6592 | |
6593 | /* For explicit conversion, turn off -Wconversion and -Wconversion-extra |
6594 | warnings. */ |
6595 | tmp1 = warn_conversionglobal_options.x_warn_conversion; |
6596 | tmp2 = warn_conversion_extraglobal_options.x_warn_conversion_extra; |
6597 | warn_conversionglobal_options.x_warn_conversion = warn_conversion_extraglobal_options.x_warn_conversion_extra = 0; |
6598 | |
6599 | result = gfc_convert_constant (e, BT_REAL, kind); |
6600 | |
6601 | warn_conversionglobal_options.x_warn_conversion = tmp1; |
6602 | warn_conversion_extraglobal_options.x_warn_conversion_extra = tmp2; |
6603 | |
6604 | if (result == &gfc_bad_expr) |
6605 | return &gfc_bad_expr; |
6606 | |
6607 | return range_check (result, "REAL"); |
6608 | } |
6609 | |
6610 | |
6611 | gfc_expr * |
6612 | gfc_simplify_realpart (gfc_expr *e) |
6613 | { |
6614 | gfc_expr *result; |
6615 | |
6616 | if (e->expr_type != EXPR_CONSTANT) |
6617 | return NULL__null; |
6618 | |
6619 | result = gfc_get_constant_expr (BT_REAL, e->ts.kind, &e->where); |
6620 | mpc_real (result->value.real, e->value.complex, GFC_RND_MODEMPFR_RNDN); |
6621 | |
6622 | return range_check (result, "REALPART"); |
6623 | } |
6624 | |
6625 | gfc_expr * |
6626 | gfc_simplify_repeat (gfc_expr *e, gfc_expr *n) |
6627 | { |
6628 | gfc_expr *result; |
6629 | gfc_charlen_t len; |
6630 | mpz_t ncopies; |
6631 | bool have_length = false; |
6632 | |
6633 | /* If NCOPIES isn't a constant, there's nothing we can do. */ |
6634 | if (n->expr_type != EXPR_CONSTANT) |
6635 | return NULL__null; |
6636 | |
6637 | /* If NCOPIES is negative, it's an error. */ |
6638 | if (mpz_sgn (n->value.integer)((n->value.integer)->_mp_size < 0 ? -1 : (n->value .integer)->_mp_size > 0) < 0) |
6639 | { |
6640 | gfc_error ("Argument NCOPIES of REPEAT intrinsic is negative at %L", |
6641 | &n->where); |