File: | build/gcc/fortran/expr.c |
Warning: | line 2910, column 10 Although the value stored to 'm' is used in the enclosing expression, the value is never actually read from 'm' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* Routines for manipulation of expression nodes. |
2 | Copyright (C) 2000-2021 Free Software Foundation, Inc. |
3 | Contributed by Andy Vaught |
4 | |
5 | This file is part of GCC. |
6 | |
7 | GCC is free software; you can redistribute it and/or modify it under |
8 | the terms of the GNU General Public License as published by the Free |
9 | Software Foundation; either version 3, or (at your option) any later |
10 | version. |
11 | |
12 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
13 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
14 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
15 | for more details. |
16 | |
17 | You should have received a copy of the GNU General Public License |
18 | along with GCC; see the file COPYING3. If not see |
19 | <http://www.gnu.org/licenses/>. */ |
20 | |
21 | #include "config.h" |
22 | #include "system.h" |
23 | #include "coretypes.h" |
24 | #include "options.h" |
25 | #include "gfortran.h" |
26 | #include "arith.h" |
27 | #include "match.h" |
28 | #include "target-memory.h" /* for gfc_convert_boz */ |
29 | #include "constructor.h" |
30 | #include "tree.h" |
31 | |
32 | |
33 | /* The following set of functions provide access to gfc_expr* of |
34 | various types - actual all but EXPR_FUNCTION and EXPR_VARIABLE. |
35 | |
36 | There are two functions available elsewhere that provide |
37 | slightly different flavours of variables. Namely: |
38 | expr.c (gfc_get_variable_expr) |
39 | symbol.c (gfc_lval_expr_from_sym) |
40 | TODO: Merge these functions, if possible. */ |
41 | |
42 | /* Get a new expression node. */ |
43 | |
44 | gfc_expr * |
45 | gfc_get_expr (void) |
46 | { |
47 | gfc_expr *e; |
48 | |
49 | e = XCNEW (gfc_expr)((gfc_expr *) xcalloc (1, sizeof (gfc_expr))); |
50 | gfc_clear_ts (&e->ts); |
51 | e->shape = NULL__null; |
52 | e->ref = NULL__null; |
53 | e->symtree = NULL__null; |
54 | return e; |
55 | } |
56 | |
57 | |
58 | /* Get a new expression node that is an array constructor |
59 | of given type and kind. */ |
60 | |
61 | gfc_expr * |
62 | gfc_get_array_expr (bt type, int kind, locus *where) |
63 | { |
64 | gfc_expr *e; |
65 | |
66 | e = gfc_get_expr (); |
67 | e->expr_type = EXPR_ARRAY; |
68 | e->value.constructor = NULL__null; |
69 | e->rank = 1; |
70 | e->shape = NULL__null; |
71 | |
72 | e->ts.type = type; |
73 | e->ts.kind = kind; |
74 | if (where) |
75 | e->where = *where; |
76 | |
77 | return e; |
78 | } |
79 | |
80 | |
81 | /* Get a new expression node that is the NULL expression. */ |
82 | |
83 | gfc_expr * |
84 | gfc_get_null_expr (locus *where) |
85 | { |
86 | gfc_expr *e; |
87 | |
88 | e = gfc_get_expr (); |
89 | e->expr_type = EXPR_NULL; |
90 | e->ts.type = BT_UNKNOWN; |
91 | |
92 | if (where) |
93 | e->where = *where; |
94 | |
95 | return e; |
96 | } |
97 | |
98 | |
99 | /* Get a new expression node that is an operator expression node. */ |
100 | |
101 | gfc_expr * |
102 | gfc_get_operator_expr (locus *where, gfc_intrinsic_op op, |
103 | gfc_expr *op1, gfc_expr *op2) |
104 | { |
105 | gfc_expr *e; |
106 | |
107 | e = gfc_get_expr (); |
108 | e->expr_type = EXPR_OP; |
109 | e->value.op.op = op; |
110 | e->value.op.op1 = op1; |
111 | e->value.op.op2 = op2; |
112 | |
113 | if (where) |
114 | e->where = *where; |
115 | |
116 | return e; |
117 | } |
118 | |
119 | |
120 | /* Get a new expression node that is an structure constructor |
121 | of given type and kind. */ |
122 | |
123 | gfc_expr * |
124 | gfc_get_structure_constructor_expr (bt type, int kind, locus *where) |
125 | { |
126 | gfc_expr *e; |
127 | |
128 | e = gfc_get_expr (); |
129 | e->expr_type = EXPR_STRUCTURE; |
130 | e->value.constructor = NULL__null; |
131 | |
132 | e->ts.type = type; |
133 | e->ts.kind = kind; |
134 | if (where) |
135 | e->where = *where; |
136 | |
137 | return e; |
138 | } |
139 | |
140 | |
141 | /* Get a new expression node that is an constant of given type and kind. */ |
142 | |
143 | gfc_expr * |
144 | gfc_get_constant_expr (bt type, int kind, locus *where) |
145 | { |
146 | gfc_expr *e; |
147 | |
148 | if (!where) |
149 | gfc_internal_error ("gfc_get_constant_expr(): locus %<where%> cannot be " |
150 | "NULL"); |
151 | |
152 | e = gfc_get_expr (); |
153 | |
154 | e->expr_type = EXPR_CONSTANT; |
155 | e->ts.type = type; |
156 | e->ts.kind = kind; |
157 | e->where = *where; |
158 | |
159 | switch (type) |
160 | { |
161 | case BT_INTEGER: |
162 | mpz_init__gmpz_init (e->value.integer); |
163 | break; |
164 | |
165 | case BT_REAL: |
166 | gfc_set_model_kind (kind); |
167 | mpfr_init (e->value.real); |
168 | break; |
169 | |
170 | case BT_COMPLEX: |
171 | gfc_set_model_kind (kind); |
172 | mpc_init2 (e->value.complex, mpfr_get_default_prec()); |
173 | break; |
174 | |
175 | default: |
176 | break; |
177 | } |
178 | |
179 | return e; |
180 | } |
181 | |
182 | |
183 | /* Get a new expression node that is an string constant. |
184 | If no string is passed, a string of len is allocated, |
185 | blanked and null-terminated. */ |
186 | |
187 | gfc_expr * |
188 | gfc_get_character_expr (int kind, locus *where, const char *src, gfc_charlen_t len) |
189 | { |
190 | gfc_expr *e; |
191 | gfc_char_t *dest; |
192 | |
193 | if (!src) |
194 | { |
195 | dest = gfc_get_wide_string (len + 1)((gfc_char_t *) xcalloc ((len + 1), sizeof (gfc_char_t))); |
196 | gfc_wide_memset (dest, ' ', len); |
197 | dest[len] = '\0'; |
198 | } |
199 | else |
200 | dest = gfc_char_to_widechar (src); |
201 | |
202 | e = gfc_get_constant_expr (BT_CHARACTER, kind, |
203 | where ? where : &gfc_current_locus); |
204 | e->value.character.string = dest; |
205 | e->value.character.length = len; |
206 | |
207 | return e; |
208 | } |
209 | |
210 | |
211 | /* Get a new expression node that is an integer constant. */ |
212 | |
213 | gfc_expr * |
214 | gfc_get_int_expr (int kind, locus *where, HOST_WIDE_INTlong value) |
215 | { |
216 | gfc_expr *p; |
217 | p = gfc_get_constant_expr (BT_INTEGER, kind, |
218 | where ? where : &gfc_current_locus); |
219 | |
220 | const wide_int w = wi::shwi (value, kind * BITS_PER_UNIT(8)); |
221 | wi::to_mpz (w, p->value.integer, SIGNED); |
222 | |
223 | return p; |
224 | } |
225 | |
226 | |
227 | /* Get a new expression node that is a logical constant. */ |
228 | |
229 | gfc_expr * |
230 | gfc_get_logical_expr (int kind, locus *where, bool value) |
231 | { |
232 | gfc_expr *p; |
233 | p = gfc_get_constant_expr (BT_LOGICAL, kind, |
234 | where ? where : &gfc_current_locus); |
235 | |
236 | p->value.logical = value; |
237 | |
238 | return p; |
239 | } |
240 | |
241 | |
242 | gfc_expr * |
243 | gfc_get_iokind_expr (locus *where, io_kind k) |
244 | { |
245 | gfc_expr *e; |
246 | |
247 | /* Set the types to something compatible with iokind. This is needed to |
248 | get through gfc_free_expr later since iokind really has no Basic Type, |
249 | BT, of its own. */ |
250 | |
251 | e = gfc_get_expr (); |
252 | e->expr_type = EXPR_CONSTANT; |
253 | e->ts.type = BT_LOGICAL; |
254 | e->value.iokind = k; |
255 | e->where = *where; |
256 | |
257 | return e; |
258 | } |
259 | |
260 | |
261 | /* Given an expression pointer, return a copy of the expression. This |
262 | subroutine is recursive. */ |
263 | |
264 | gfc_expr * |
265 | gfc_copy_expr (gfc_expr *p) |
266 | { |
267 | gfc_expr *q; |
268 | gfc_char_t *s; |
269 | char *c; |
270 | |
271 | if (p == NULL__null) |
272 | return NULL__null; |
273 | |
274 | q = gfc_get_expr (); |
275 | *q = *p; |
276 | |
277 | switch (q->expr_type) |
278 | { |
279 | case EXPR_SUBSTRING: |
280 | s = gfc_get_wide_string (p->value.character.length + 1)((gfc_char_t *) xcalloc ((p->value.character.length + 1), sizeof (gfc_char_t))); |
281 | q->value.character.string = s; |
282 | memcpy (s, p->value.character.string, |
283 | (p->value.character.length + 1) * sizeof (gfc_char_t)); |
284 | break; |
285 | |
286 | case EXPR_CONSTANT: |
287 | /* Copy target representation, if it exists. */ |
288 | if (p->representation.string) |
289 | { |
290 | c = XCNEWVEC (char, p->representation.length + 1)((char *) xcalloc ((p->representation.length + 1), sizeof ( char))); |
291 | q->representation.string = c; |
292 | memcpy (c, p->representation.string, (p->representation.length + 1)); |
293 | } |
294 | |
295 | /* Copy the values of any pointer components of p->value. */ |
296 | switch (q->ts.type) |
297 | { |
298 | case BT_INTEGER: |
299 | mpz_init_set__gmpz_init_set (q->value.integer, p->value.integer); |
300 | break; |
301 | |
302 | case BT_REAL: |
303 | gfc_set_model_kind (q->ts.kind); |
304 | mpfr_init (q->value.real); |
305 | mpfr_set (q->value.real, p->value.real, GFC_RND_MODE)mpfr_set4(q->value.real,p->value.real,MPFR_RNDN,((p-> value.real)->_mpfr_sign)); |
306 | break; |
307 | |
308 | case BT_COMPLEX: |
309 | gfc_set_model_kind (q->ts.kind); |
310 | mpc_init2 (q->value.complex, mpfr_get_default_prec()); |
311 | mpc_set (q->value.complex, p->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
312 | break; |
313 | |
314 | case BT_CHARACTER: |
315 | if (p->representation.string) |
316 | q->value.character.string |
317 | = gfc_char_to_widechar (q->representation.string); |
318 | else |
319 | { |
320 | s = gfc_get_wide_string (p->value.character.length + 1)((gfc_char_t *) xcalloc ((p->value.character.length + 1), sizeof (gfc_char_t))); |
321 | q->value.character.string = s; |
322 | |
323 | /* This is the case for the C_NULL_CHAR named constant. */ |
324 | if (p->value.character.length == 0 |
325 | && (p->ts.is_c_interop || p->ts.is_iso_c)) |
326 | { |
327 | *s = '\0'; |
328 | /* Need to set the length to 1 to make sure the NUL |
329 | terminator is copied. */ |
330 | q->value.character.length = 1; |
331 | } |
332 | else |
333 | memcpy (s, p->value.character.string, |
334 | (p->value.character.length + 1) * sizeof (gfc_char_t)); |
335 | } |
336 | break; |
337 | |
338 | case BT_HOLLERITH: |
339 | case BT_LOGICAL: |
340 | case_bt_structcase BT_DERIVED: case BT_UNION: |
341 | case BT_CLASS: |
342 | case BT_ASSUMED: |
343 | break; /* Already done. */ |
344 | |
345 | case BT_BOZ: |
346 | q->boz.len = p->boz.len; |
347 | q->boz.rdx = p->boz.rdx; |
348 | q->boz.str = XCNEWVEC (char, q->boz.len + 1)((char *) xcalloc ((q->boz.len + 1), sizeof (char))); |
349 | strncpy (q->boz.str, p->boz.str, p->boz.len); |
350 | break; |
351 | |
352 | case BT_PROCEDURE: |
353 | case BT_VOID: |
354 | /* Should never be reached. */ |
355 | case BT_UNKNOWN: |
356 | gfc_internal_error ("gfc_copy_expr(): Bad expr node"); |
357 | /* Not reached. */ |
358 | } |
359 | |
360 | break; |
361 | |
362 | case EXPR_OP: |
363 | switch (q->value.op.op) |
364 | { |
365 | case INTRINSIC_NOT: |
366 | case INTRINSIC_PARENTHESES: |
367 | case INTRINSIC_UPLUS: |
368 | case INTRINSIC_UMINUS: |
369 | q->value.op.op1 = gfc_copy_expr (p->value.op.op1); |
370 | break; |
371 | |
372 | default: /* Binary operators. */ |
373 | q->value.op.op1 = gfc_copy_expr (p->value.op.op1); |
374 | q->value.op.op2 = gfc_copy_expr (p->value.op.op2); |
375 | break; |
376 | } |
377 | |
378 | break; |
379 | |
380 | case EXPR_FUNCTION: |
381 | q->value.function.actual = |
382 | gfc_copy_actual_arglist (p->value.function.actual); |
383 | break; |
384 | |
385 | case EXPR_COMPCALL: |
386 | case EXPR_PPC: |
387 | q->value.compcall.actual = |
388 | gfc_copy_actual_arglist (p->value.compcall.actual); |
389 | q->value.compcall.tbp = p->value.compcall.tbp; |
390 | break; |
391 | |
392 | case EXPR_STRUCTURE: |
393 | case EXPR_ARRAY: |
394 | q->value.constructor = gfc_constructor_copy (p->value.constructor); |
395 | break; |
396 | |
397 | case EXPR_VARIABLE: |
398 | case EXPR_NULL: |
399 | break; |
400 | |
401 | case EXPR_UNKNOWN: |
402 | gcc_unreachable ()(fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 402, __FUNCTION__)); |
403 | } |
404 | |
405 | q->shape = gfc_copy_shape (p->shape, p->rank); |
406 | |
407 | q->ref = gfc_copy_ref (p->ref); |
408 | |
409 | if (p->param_list) |
410 | q->param_list = gfc_copy_actual_arglist (p->param_list); |
411 | |
412 | return q; |
413 | } |
414 | |
415 | |
416 | void |
417 | gfc_clear_shape (mpz_t *shape, int rank) |
418 | { |
419 | int i; |
420 | |
421 | for (i = 0; i < rank; i++) |
422 | mpz_clear__gmpz_clear (shape[i]); |
423 | } |
424 | |
425 | |
426 | void |
427 | gfc_free_shape (mpz_t **shape, int rank) |
428 | { |
429 | if (*shape == NULL__null) |
430 | return; |
431 | |
432 | gfc_clear_shape (*shape, rank); |
433 | free (*shape); |
434 | *shape = NULL__null; |
435 | } |
436 | |
437 | |
438 | /* Workhorse function for gfc_free_expr() that frees everything |
439 | beneath an expression node, but not the node itself. This is |
440 | useful when we want to simplify a node and replace it with |
441 | something else or the expression node belongs to another structure. */ |
442 | |
443 | static void |
444 | free_expr0 (gfc_expr *e) |
445 | { |
446 | switch (e->expr_type) |
447 | { |
448 | case EXPR_CONSTANT: |
449 | /* Free any parts of the value that need freeing. */ |
450 | switch (e->ts.type) |
451 | { |
452 | case BT_INTEGER: |
453 | mpz_clear__gmpz_clear (e->value.integer); |
454 | break; |
455 | |
456 | case BT_REAL: |
457 | mpfr_clear (e->value.real); |
458 | break; |
459 | |
460 | case BT_CHARACTER: |
461 | free (e->value.character.string); |
462 | break; |
463 | |
464 | case BT_COMPLEX: |
465 | mpc_clear (e->value.complex); |
466 | break; |
467 | |
468 | default: |
469 | break; |
470 | } |
471 | |
472 | /* Free the representation. */ |
473 | free (e->representation.string); |
474 | |
475 | break; |
476 | |
477 | case EXPR_OP: |
478 | if (e->value.op.op1 != NULL__null) |
479 | gfc_free_expr (e->value.op.op1); |
480 | if (e->value.op.op2 != NULL__null) |
481 | gfc_free_expr (e->value.op.op2); |
482 | break; |
483 | |
484 | case EXPR_FUNCTION: |
485 | gfc_free_actual_arglist (e->value.function.actual); |
486 | break; |
487 | |
488 | case EXPR_COMPCALL: |
489 | case EXPR_PPC: |
490 | gfc_free_actual_arglist (e->value.compcall.actual); |
491 | break; |
492 | |
493 | case EXPR_VARIABLE: |
494 | break; |
495 | |
496 | case EXPR_ARRAY: |
497 | case EXPR_STRUCTURE: |
498 | gfc_constructor_free (e->value.constructor); |
499 | break; |
500 | |
501 | case EXPR_SUBSTRING: |
502 | free (e->value.character.string); |
503 | break; |
504 | |
505 | case EXPR_NULL: |
506 | break; |
507 | |
508 | default: |
509 | gfc_internal_error ("free_expr0(): Bad expr type"); |
510 | } |
511 | |
512 | /* Free a shape array. */ |
513 | gfc_free_shape (&e->shape, e->rank); |
514 | |
515 | gfc_free_ref_list (e->ref); |
516 | |
517 | gfc_free_actual_arglist (e->param_list); |
518 | |
519 | memset (e, '\0', sizeof (gfc_expr)); |
520 | } |
521 | |
522 | |
523 | /* Free an expression node and everything beneath it. */ |
524 | |
525 | void |
526 | gfc_free_expr (gfc_expr *e) |
527 | { |
528 | if (e == NULL__null) |
529 | return; |
530 | free_expr0 (e); |
531 | free (e); |
532 | } |
533 | |
534 | |
535 | /* Free an argument list and everything below it. */ |
536 | |
537 | void |
538 | gfc_free_actual_arglist (gfc_actual_arglist *a1) |
539 | { |
540 | gfc_actual_arglist *a2; |
541 | |
542 | while (a1) |
543 | { |
544 | a2 = a1->next; |
545 | if (a1->expr) |
546 | gfc_free_expr (a1->expr); |
547 | free (a1); |
548 | a1 = a2; |
549 | } |
550 | } |
551 | |
552 | |
553 | /* Copy an arglist structure and all of the arguments. */ |
554 | |
555 | gfc_actual_arglist * |
556 | gfc_copy_actual_arglist (gfc_actual_arglist *p) |
557 | { |
558 | gfc_actual_arglist *head, *tail, *new_arg; |
559 | |
560 | head = tail = NULL__null; |
561 | |
562 | for (; p; p = p->next) |
563 | { |
564 | new_arg = gfc_get_actual_arglist ()((gfc_actual_arglist *) xcalloc (1, sizeof (gfc_actual_arglist ))); |
565 | *new_arg = *p; |
566 | |
567 | new_arg->expr = gfc_copy_expr (p->expr); |
568 | new_arg->next = NULL__null; |
569 | |
570 | if (head == NULL__null) |
571 | head = new_arg; |
572 | else |
573 | tail->next = new_arg; |
574 | |
575 | tail = new_arg; |
576 | } |
577 | |
578 | return head; |
579 | } |
580 | |
581 | |
582 | /* Free a list of reference structures. */ |
583 | |
584 | void |
585 | gfc_free_ref_list (gfc_ref *p) |
586 | { |
587 | gfc_ref *q; |
588 | int i; |
589 | |
590 | for (; p; p = q) |
591 | { |
592 | q = p->next; |
593 | |
594 | switch (p->type) |
595 | { |
596 | case REF_ARRAY: |
597 | for (i = 0; i < GFC_MAX_DIMENSIONS15; i++) |
598 | { |
599 | gfc_free_expr (p->u.ar.start[i]); |
600 | gfc_free_expr (p->u.ar.end[i]); |
601 | gfc_free_expr (p->u.ar.stride[i]); |
602 | } |
603 | |
604 | break; |
605 | |
606 | case REF_SUBSTRING: |
607 | gfc_free_expr (p->u.ss.start); |
608 | gfc_free_expr (p->u.ss.end); |
609 | break; |
610 | |
611 | case REF_COMPONENT: |
612 | case REF_INQUIRY: |
613 | break; |
614 | } |
615 | |
616 | free (p); |
617 | } |
618 | } |
619 | |
620 | |
621 | /* Graft the *src expression onto the *dest subexpression. */ |
622 | |
623 | void |
624 | gfc_replace_expr (gfc_expr *dest, gfc_expr *src) |
625 | { |
626 | free_expr0 (dest); |
627 | *dest = *src; |
628 | free (src); |
629 | } |
630 | |
631 | |
632 | /* Try to extract an integer constant from the passed expression node. |
633 | Return true if some error occurred, false on success. If REPORT_ERROR |
634 | is non-zero, emit error, for positive REPORT_ERROR using gfc_error, |
635 | for negative using gfc_error_now. */ |
636 | |
637 | bool |
638 | gfc_extract_int (gfc_expr *expr, int *result, int report_error) |
639 | { |
640 | gfc_ref *ref; |
641 | |
642 | /* A KIND component is a parameter too. The expression for it |
643 | is stored in the initializer and should be consistent with |
644 | the tests below. */ |
645 | if (gfc_expr_attr(expr).pdt_kind) |
646 | { |
647 | for (ref = expr->ref; ref; ref = ref->next) |
648 | { |
649 | if (ref->u.c.component->attr.pdt_kind) |
650 | expr = ref->u.c.component->initializer; |
651 | } |
652 | } |
653 | |
654 | if (expr->expr_type != EXPR_CONSTANT) |
655 | { |
656 | if (report_error > 0) |
657 | gfc_error ("Constant expression required at %C"); |
658 | else if (report_error < 0) |
659 | gfc_error_now ("Constant expression required at %C"); |
660 | return true; |
661 | } |
662 | |
663 | if (expr->ts.type != BT_INTEGER) |
664 | { |
665 | if (report_error > 0) |
666 | gfc_error ("Integer expression required at %C"); |
667 | else if (report_error < 0) |
668 | gfc_error_now ("Integer expression required at %C"); |
669 | return true; |
670 | } |
671 | |
672 | if ((mpz_cmp_si (expr->value.integer, INT_MAX)(__builtin_constant_p ((2147483647) >= 0) && (2147483647 ) >= 0 ? (__builtin_constant_p ((static_cast<unsigned long > (2147483647))) && ((static_cast<unsigned long > (2147483647))) == 0 ? ((expr->value.integer)->_mp_size < 0 ? -1 : (expr->value.integer)->_mp_size > 0) : __gmpz_cmp_ui (expr->value.integer,(static_cast<unsigned long> (2147483647)))) : __gmpz_cmp_si (expr->value.integer ,2147483647)) > 0) |
673 | || (mpz_cmp_si (expr->value.integer, INT_MIN)(__builtin_constant_p (((-2147483647 -1)) >= 0) && ((-2147483647 -1)) >= 0 ? (__builtin_constant_p ((static_cast <unsigned long> ((-2147483647 -1)))) && ((static_cast <unsigned long> ((-2147483647 -1)))) == 0 ? ((expr-> value.integer)->_mp_size < 0 ? -1 : (expr->value.integer )->_mp_size > 0) : __gmpz_cmp_ui (expr->value.integer ,(static_cast<unsigned long> ((-2147483647 -1))))) : __gmpz_cmp_si (expr->value.integer,(-2147483647 -1))) < 0)) |
674 | { |
675 | if (report_error > 0) |
676 | gfc_error ("Integer value too large in expression at %C"); |
677 | else if (report_error < 0) |
678 | gfc_error_now ("Integer value too large in expression at %C"); |
679 | return true; |
680 | } |
681 | |
682 | *result = (int) mpz_get_si__gmpz_get_si (expr->value.integer); |
683 | |
684 | return false; |
685 | } |
686 | |
687 | |
688 | /* Same as gfc_extract_int, but use a HWI. */ |
689 | |
690 | bool |
691 | gfc_extract_hwi (gfc_expr *expr, HOST_WIDE_INTlong *result, int report_error) |
692 | { |
693 | gfc_ref *ref; |
694 | |
695 | /* A KIND component is a parameter too. The expression for it is |
696 | stored in the initializer and should be consistent with the tests |
697 | below. */ |
698 | if (gfc_expr_attr(expr).pdt_kind) |
699 | { |
700 | for (ref = expr->ref; ref; ref = ref->next) |
701 | { |
702 | if (ref->u.c.component->attr.pdt_kind) |
703 | expr = ref->u.c.component->initializer; |
704 | } |
705 | } |
706 | |
707 | if (expr->expr_type != EXPR_CONSTANT) |
708 | { |
709 | if (report_error > 0) |
710 | gfc_error ("Constant expression required at %C"); |
711 | else if (report_error < 0) |
712 | gfc_error_now ("Constant expression required at %C"); |
713 | return true; |
714 | } |
715 | |
716 | if (expr->ts.type != BT_INTEGER) |
717 | { |
718 | if (report_error > 0) |
719 | gfc_error ("Integer expression required at %C"); |
720 | else if (report_error < 0) |
721 | gfc_error_now ("Integer expression required at %C"); |
722 | return true; |
723 | } |
724 | |
725 | /* Use long_long_integer_type_node to determine when to saturate. */ |
726 | const wide_int val = wi::from_mpz (long_long_integer_type_nodeinteger_types[itk_long_long], |
727 | expr->value.integer, false); |
728 | |
729 | if (!wi::fits_shwi_p (val)) |
730 | { |
731 | if (report_error > 0) |
732 | gfc_error ("Integer value too large in expression at %C"); |
733 | else if (report_error < 0) |
734 | gfc_error_now ("Integer value too large in expression at %C"); |
735 | return true; |
736 | } |
737 | |
738 | *result = val.to_shwi (); |
739 | |
740 | return false; |
741 | } |
742 | |
743 | |
744 | /* Recursively copy a list of reference structures. */ |
745 | |
746 | gfc_ref * |
747 | gfc_copy_ref (gfc_ref *src) |
748 | { |
749 | gfc_array_ref *ar; |
750 | gfc_ref *dest; |
751 | |
752 | if (src == NULL__null) |
753 | return NULL__null; |
754 | |
755 | dest = gfc_get_ref ()((gfc_ref *) xcalloc (1, sizeof (gfc_ref))); |
756 | dest->type = src->type; |
757 | |
758 | switch (src->type) |
759 | { |
760 | case REF_ARRAY: |
761 | ar = gfc_copy_array_ref (&src->u.ar); |
762 | dest->u.ar = *ar; |
763 | free (ar); |
764 | break; |
765 | |
766 | case REF_COMPONENT: |
767 | dest->u.c = src->u.c; |
768 | break; |
769 | |
770 | case REF_INQUIRY: |
771 | dest->u.i = src->u.i; |
772 | break; |
773 | |
774 | case REF_SUBSTRING: |
775 | dest->u.ss = src->u.ss; |
776 | dest->u.ss.start = gfc_copy_expr (src->u.ss.start); |
777 | dest->u.ss.end = gfc_copy_expr (src->u.ss.end); |
778 | break; |
779 | } |
780 | |
781 | dest->next = gfc_copy_ref (src->next); |
782 | |
783 | return dest; |
784 | } |
785 | |
786 | |
787 | /* Detect whether an expression has any vector index array references. */ |
788 | |
789 | int |
790 | gfc_has_vector_index (gfc_expr *e) |
791 | { |
792 | gfc_ref *ref; |
793 | int i; |
794 | for (ref = e->ref; ref; ref = ref->next) |
795 | if (ref->type == REF_ARRAY) |
796 | for (i = 0; i < ref->u.ar.dimen; i++) |
797 | if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR) |
798 | return 1; |
799 | return 0; |
800 | } |
801 | |
802 | |
803 | /* Copy a shape array. */ |
804 | |
805 | mpz_t * |
806 | gfc_copy_shape (mpz_t *shape, int rank) |
807 | { |
808 | mpz_t *new_shape; |
809 | int n; |
810 | |
811 | if (shape == NULL__null) |
812 | return NULL__null; |
813 | |
814 | new_shape = gfc_get_shape (rank)(((mpz_t *) xcalloc (((rank)), sizeof (mpz_t)))); |
815 | |
816 | for (n = 0; n < rank; n++) |
817 | mpz_init_set__gmpz_init_set (new_shape[n], shape[n]); |
818 | |
819 | return new_shape; |
820 | } |
821 | |
822 | |
823 | /* Copy a shape array excluding dimension N, where N is an integer |
824 | constant expression. Dimensions are numbered in Fortran style -- |
825 | starting with ONE. |
826 | |
827 | So, if the original shape array contains R elements |
828 | { s1 ... sN-1 sN sN+1 ... sR-1 sR} |
829 | the result contains R-1 elements: |
830 | { s1 ... sN-1 sN+1 ... sR-1} |
831 | |
832 | If anything goes wrong -- N is not a constant, its value is out |
833 | of range -- or anything else, just returns NULL. */ |
834 | |
835 | mpz_t * |
836 | gfc_copy_shape_excluding (mpz_t *shape, int rank, gfc_expr *dim) |
837 | { |
838 | mpz_t *new_shape, *s; |
839 | int i, n; |
840 | |
841 | if (shape == NULL__null |
842 | || rank <= 1 |
843 | || dim == NULL__null |
844 | || dim->expr_type != EXPR_CONSTANT |
845 | || dim->ts.type != BT_INTEGER) |
846 | return NULL__null; |
847 | |
848 | n = mpz_get_si__gmpz_get_si (dim->value.integer); |
849 | n--; /* Convert to zero based index. */ |
850 | if (n < 0 || n >= rank) |
851 | return NULL__null; |
852 | |
853 | s = new_shape = gfc_get_shape (rank - 1)(((mpz_t *) xcalloc (((rank - 1)), sizeof (mpz_t)))); |
854 | |
855 | for (i = 0; i < rank; i++) |
856 | { |
857 | if (i == n) |
858 | continue; |
859 | mpz_init_set__gmpz_init_set (*s, shape[i]); |
860 | s++; |
861 | } |
862 | |
863 | return new_shape; |
864 | } |
865 | |
866 | |
867 | /* Return the maximum kind of two expressions. In general, higher |
868 | kind numbers mean more precision for numeric types. */ |
869 | |
870 | int |
871 | gfc_kind_max (gfc_expr *e1, gfc_expr *e2) |
872 | { |
873 | return (e1->ts.kind > e2->ts.kind) ? e1->ts.kind : e2->ts.kind; |
874 | } |
875 | |
876 | |
877 | /* Returns nonzero if the type is numeric, zero otherwise. */ |
878 | |
879 | static int |
880 | numeric_type (bt type) |
881 | { |
882 | return type == BT_COMPLEX || type == BT_REAL || type == BT_INTEGER; |
883 | } |
884 | |
885 | |
886 | /* Returns nonzero if the typespec is a numeric type, zero otherwise. */ |
887 | |
888 | int |
889 | gfc_numeric_ts (gfc_typespec *ts) |
890 | { |
891 | return numeric_type (ts->type); |
892 | } |
893 | |
894 | |
895 | /* Return an expression node with an optional argument list attached. |
896 | A variable number of gfc_expr pointers are strung together in an |
897 | argument list with a NULL pointer terminating the list. */ |
898 | |
899 | gfc_expr * |
900 | gfc_build_conversion (gfc_expr *e) |
901 | { |
902 | gfc_expr *p; |
903 | |
904 | p = gfc_get_expr (); |
905 | p->expr_type = EXPR_FUNCTION; |
906 | p->symtree = NULL__null; |
907 | p->value.function.actual = gfc_get_actual_arglist ()((gfc_actual_arglist *) xcalloc (1, sizeof (gfc_actual_arglist ))); |
908 | p->value.function.actual->expr = e; |
909 | |
910 | return p; |
911 | } |
912 | |
913 | |
914 | /* Given an expression node with some sort of numeric binary |
915 | expression, insert type conversions required to make the operands |
916 | have the same type. Conversion warnings are disabled if wconversion |
917 | is set to 0. |
918 | |
919 | The exception is that the operands of an exponential don't have to |
920 | have the same type. If possible, the base is promoted to the type |
921 | of the exponent. For example, 1**2.3 becomes 1.0**2.3, but |
922 | 1.0**2 stays as it is. */ |
923 | |
924 | void |
925 | gfc_type_convert_binary (gfc_expr *e, int wconversion) |
926 | { |
927 | gfc_expr *op1, *op2; |
928 | |
929 | op1 = e->value.op.op1; |
930 | op2 = e->value.op.op2; |
931 | |
932 | if (op1->ts.type == BT_UNKNOWN || op2->ts.type == BT_UNKNOWN) |
933 | { |
934 | gfc_clear_ts (&e->ts); |
935 | return; |
936 | } |
937 | |
938 | /* Kind conversions of same type. */ |
939 | if (op1->ts.type == op2->ts.type) |
940 | { |
941 | if (op1->ts.kind == op2->ts.kind) |
942 | { |
943 | /* No type conversions. */ |
944 | e->ts = op1->ts; |
945 | goto done; |
946 | } |
947 | |
948 | if (op1->ts.kind > op2->ts.kind) |
949 | gfc_convert_type_warn (op2, &op1->ts, 2, wconversion); |
950 | else |
951 | gfc_convert_type_warn (op1, &op2->ts, 2, wconversion); |
952 | |
953 | e->ts = op1->ts; |
954 | goto done; |
955 | } |
956 | |
957 | /* Integer combined with real or complex. */ |
958 | if (op2->ts.type == BT_INTEGER) |
959 | { |
960 | e->ts = op1->ts; |
961 | |
962 | /* Special case for ** operator. */ |
963 | if (e->value.op.op == INTRINSIC_POWER) |
964 | goto done; |
965 | |
966 | gfc_convert_type_warn (e->value.op.op2, &e->ts, 2, wconversion); |
967 | goto done; |
968 | } |
969 | |
970 | if (op1->ts.type == BT_INTEGER) |
971 | { |
972 | e->ts = op2->ts; |
973 | gfc_convert_type_warn (e->value.op.op1, &e->ts, 2, wconversion); |
974 | goto done; |
975 | } |
976 | |
977 | /* Real combined with complex. */ |
978 | e->ts.type = BT_COMPLEX; |
979 | if (op1->ts.kind > op2->ts.kind) |
980 | e->ts.kind = op1->ts.kind; |
981 | else |
982 | e->ts.kind = op2->ts.kind; |
983 | if (op1->ts.type != BT_COMPLEX || op1->ts.kind != e->ts.kind) |
984 | gfc_convert_type_warn (e->value.op.op1, &e->ts, 2, wconversion); |
985 | if (op2->ts.type != BT_COMPLEX || op2->ts.kind != e->ts.kind) |
986 | gfc_convert_type_warn (e->value.op.op2, &e->ts, 2, wconversion); |
987 | |
988 | done: |
989 | return; |
990 | } |
991 | |
992 | |
993 | /* Determine if an expression is constant in the sense of F08:7.1.12. |
994 | * This function expects that the expression has already been simplified. */ |
995 | |
996 | bool |
997 | gfc_is_constant_expr (gfc_expr *e) |
998 | { |
999 | gfc_constructor *c; |
1000 | gfc_actual_arglist *arg; |
1001 | |
1002 | if (e == NULL__null) |
1003 | return true; |
1004 | |
1005 | switch (e->expr_type) |
1006 | { |
1007 | case EXPR_OP: |
1008 | return (gfc_is_constant_expr (e->value.op.op1) |
1009 | && (e->value.op.op2 == NULL__null |
1010 | || gfc_is_constant_expr (e->value.op.op2))); |
1011 | |
1012 | case EXPR_VARIABLE: |
1013 | /* The only context in which this can occur is in a parameterized |
1014 | derived type declaration, so returning true is OK. */ |
1015 | if (e->symtree->n.sym->attr.pdt_len |
1016 | || e->symtree->n.sym->attr.pdt_kind) |
1017 | return true; |
1018 | return false; |
1019 | |
1020 | case EXPR_FUNCTION: |
1021 | case EXPR_PPC: |
1022 | case EXPR_COMPCALL: |
1023 | gcc_assert (e->symtree || e->value.function.esym((void)(!(e->symtree || e->value.function.esym || e-> value.function.isym) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 1024, __FUNCTION__), 0 : 0)) |
1024 | || e->value.function.isym)((void)(!(e->symtree || e->value.function.esym || e-> value.function.isym) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 1024, __FUNCTION__), 0 : 0)); |
1025 | |
1026 | /* Call to intrinsic with at least one argument. */ |
1027 | if (e->value.function.isym && e->value.function.actual) |
1028 | { |
1029 | for (arg = e->value.function.actual; arg; arg = arg->next) |
1030 | if (!gfc_is_constant_expr (arg->expr)) |
1031 | return false; |
1032 | } |
1033 | |
1034 | if (e->value.function.isym |
1035 | && (e->value.function.isym->elemental |
1036 | || e->value.function.isym->pure |
1037 | || e->value.function.isym->inquiry |
1038 | || e->value.function.isym->transformational)) |
1039 | return true; |
1040 | |
1041 | return false; |
1042 | |
1043 | case EXPR_CONSTANT: |
1044 | case EXPR_NULL: |
1045 | return true; |
1046 | |
1047 | case EXPR_SUBSTRING: |
1048 | return e->ref == NULL__null || (gfc_is_constant_expr (e->ref->u.ss.start) |
1049 | && gfc_is_constant_expr (e->ref->u.ss.end)); |
1050 | |
1051 | case EXPR_ARRAY: |
1052 | case EXPR_STRUCTURE: |
1053 | c = gfc_constructor_first (e->value.constructor); |
1054 | if ((e->expr_type == EXPR_ARRAY) && c && c->iterator) |
1055 | return gfc_constant_ac (e); |
1056 | |
1057 | for (; c; c = gfc_constructor_next (c)) |
1058 | if (!gfc_is_constant_expr (c->expr)) |
1059 | return false; |
1060 | |
1061 | return true; |
1062 | |
1063 | |
1064 | default: |
1065 | gfc_internal_error ("gfc_is_constant_expr(): Unknown expression type"); |
1066 | return false; |
1067 | } |
1068 | } |
1069 | |
1070 | |
1071 | /* Is true if the expression or symbol is a passed CFI descriptor. */ |
1072 | bool |
1073 | is_CFI_desc (gfc_symbol *sym, gfc_expr *e) |
1074 | { |
1075 | if (sym == NULL__null |
1076 | && e && e->expr_type == EXPR_VARIABLE) |
1077 | sym = e->symtree->n.sym; |
1078 | |
1079 | if (sym && sym->attr.dummy |
1080 | && sym->ns->proc_name->attr.is_bind_c |
1081 | && sym->attr.dimension |
1082 | && (sym->attr.pointer |
1083 | || sym->attr.allocatable |
1084 | || sym->as->type == AS_ASSUMED_SHAPE |
1085 | || sym->as->type == AS_ASSUMED_RANK)) |
1086 | return true; |
1087 | |
1088 | return false; |
1089 | } |
1090 | |
1091 | |
1092 | /* Is true if an array reference is followed by a component or substring |
1093 | reference. */ |
1094 | bool |
1095 | is_subref_array (gfc_expr * e) |
1096 | { |
1097 | gfc_ref * ref; |
1098 | bool seen_array; |
1099 | gfc_symbol *sym; |
1100 | |
1101 | if (e->expr_type != EXPR_VARIABLE) |
1102 | return false; |
1103 | |
1104 | sym = e->symtree->n.sym; |
1105 | |
1106 | if (sym->attr.subref_array_pointer) |
1107 | return true; |
1108 | |
1109 | seen_array = false; |
1110 | |
1111 | for (ref = e->ref; ref; ref = ref->next) |
1112 | { |
1113 | /* If we haven't seen the array reference and this is an intrinsic, |
1114 | what follows cannot be a subreference array, unless there is a |
1115 | substring reference. */ |
1116 | if (!seen_array && ref->type == REF_COMPONENT |
1117 | && ref->u.c.component->ts.type != BT_CHARACTER |
1118 | && ref->u.c.component->ts.type != BT_CLASS |
1119 | && !gfc_bt_struct (ref->u.c.component->ts.type)((ref->u.c.component->ts.type) == BT_DERIVED || (ref-> u.c.component->ts.type) == BT_UNION)) |
1120 | return false; |
1121 | |
1122 | if (ref->type == REF_ARRAY |
1123 | && ref->u.ar.type != AR_ELEMENT) |
1124 | seen_array = true; |
1125 | |
1126 | if (seen_array |
1127 | && ref->type != REF_ARRAY) |
1128 | return seen_array; |
1129 | } |
1130 | |
1131 | if (sym->ts.type == BT_CLASS |
1132 | && sym->attr.dummy |
1133 | && CLASS_DATA (sym)sym->ts.u.derived->components->attr.dimension |
1134 | && CLASS_DATA (sym)sym->ts.u.derived->components->attr.class_pointer) |
1135 | return true; |
1136 | |
1137 | return false; |
1138 | } |
1139 | |
1140 | |
1141 | /* Try to collapse intrinsic expressions. */ |
1142 | |
1143 | static bool |
1144 | simplify_intrinsic_op (gfc_expr *p, int type) |
1145 | { |
1146 | gfc_intrinsic_op op; |
1147 | gfc_expr *op1, *op2, *result; |
1148 | |
1149 | if (p->value.op.op == INTRINSIC_USER) |
1150 | return true; |
1151 | |
1152 | op1 = p->value.op.op1; |
1153 | op2 = p->value.op.op2; |
1154 | op = p->value.op.op; |
1155 | |
1156 | if (!gfc_simplify_expr (op1, type)) |
1157 | return false; |
1158 | if (!gfc_simplify_expr (op2, type)) |
1159 | return false; |
1160 | |
1161 | if (!gfc_is_constant_expr (op1) |
1162 | || (op2 != NULL__null && !gfc_is_constant_expr (op2))) |
1163 | return true; |
1164 | |
1165 | /* Rip p apart. */ |
1166 | p->value.op.op1 = NULL__null; |
1167 | p->value.op.op2 = NULL__null; |
1168 | |
1169 | switch (op) |
1170 | { |
1171 | case INTRINSIC_PARENTHESES: |
1172 | result = gfc_parentheses (op1); |
1173 | break; |
1174 | |
1175 | case INTRINSIC_UPLUS: |
1176 | result = gfc_uplus (op1); |
1177 | break; |
1178 | |
1179 | case INTRINSIC_UMINUS: |
1180 | result = gfc_uminus (op1); |
1181 | break; |
1182 | |
1183 | case INTRINSIC_PLUS: |
1184 | result = gfc_add (op1, op2); |
1185 | break; |
1186 | |
1187 | case INTRINSIC_MINUS: |
1188 | result = gfc_subtract (op1, op2); |
1189 | break; |
1190 | |
1191 | case INTRINSIC_TIMES: |
1192 | result = gfc_multiply (op1, op2); |
1193 | break; |
1194 | |
1195 | case INTRINSIC_DIVIDE: |
1196 | result = gfc_divide (op1, op2); |
1197 | break; |
1198 | |
1199 | case INTRINSIC_POWER: |
1200 | result = gfc_power (op1, op2); |
1201 | break; |
1202 | |
1203 | case INTRINSIC_CONCAT: |
1204 | result = gfc_concat (op1, op2); |
1205 | break; |
1206 | |
1207 | case INTRINSIC_EQ: |
1208 | case INTRINSIC_EQ_OS: |
1209 | result = gfc_eq (op1, op2, op); |
1210 | break; |
1211 | |
1212 | case INTRINSIC_NE: |
1213 | case INTRINSIC_NE_OS: |
1214 | result = gfc_ne (op1, op2, op); |
1215 | break; |
1216 | |
1217 | case INTRINSIC_GT: |
1218 | case INTRINSIC_GT_OS: |
1219 | result = gfc_gt (op1, op2, op); |
1220 | break; |
1221 | |
1222 | case INTRINSIC_GE: |
1223 | case INTRINSIC_GE_OS: |
1224 | result = gfc_ge (op1, op2, op); |
1225 | break; |
1226 | |
1227 | case INTRINSIC_LT: |
1228 | case INTRINSIC_LT_OS: |
1229 | result = gfc_lt (op1, op2, op); |
1230 | break; |
1231 | |
1232 | case INTRINSIC_LE: |
1233 | case INTRINSIC_LE_OS: |
1234 | result = gfc_le (op1, op2, op); |
1235 | break; |
1236 | |
1237 | case INTRINSIC_NOT: |
1238 | result = gfc_not (op1); |
1239 | break; |
1240 | |
1241 | case INTRINSIC_AND: |
1242 | result = gfc_and (op1, op2); |
1243 | break; |
1244 | |
1245 | case INTRINSIC_OR: |
1246 | result = gfc_or (op1, op2); |
1247 | break; |
1248 | |
1249 | case INTRINSIC_EQV: |
1250 | result = gfc_eqv (op1, op2); |
1251 | break; |
1252 | |
1253 | case INTRINSIC_NEQV: |
1254 | result = gfc_neqv (op1, op2); |
1255 | break; |
1256 | |
1257 | default: |
1258 | gfc_internal_error ("simplify_intrinsic_op(): Bad operator"); |
1259 | } |
1260 | |
1261 | if (result == NULL__null) |
1262 | { |
1263 | gfc_free_expr (op1); |
1264 | gfc_free_expr (op2); |
1265 | return false; |
1266 | } |
1267 | |
1268 | result->rank = p->rank; |
1269 | result->where = p->where; |
1270 | gfc_replace_expr (p, result); |
1271 | |
1272 | return true; |
1273 | } |
1274 | |
1275 | |
1276 | /* Subroutine to simplify constructor expressions. Mutually recursive |
1277 | with gfc_simplify_expr(). */ |
1278 | |
1279 | static bool |
1280 | simplify_constructor (gfc_constructor_base base, int type) |
1281 | { |
1282 | gfc_constructor *c; |
1283 | gfc_expr *p; |
1284 | |
1285 | for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c)) |
1286 | { |
1287 | if (c->iterator |
1288 | && (!gfc_simplify_expr(c->iterator->start, type) |
1289 | || !gfc_simplify_expr (c->iterator->end, type) |
1290 | || !gfc_simplify_expr (c->iterator->step, type))) |
1291 | return false; |
1292 | |
1293 | if (c->expr) |
1294 | { |
1295 | /* Try and simplify a copy. Replace the original if successful |
1296 | but keep going through the constructor at all costs. Not |
1297 | doing so can make a dog's dinner of complicated things. */ |
1298 | p = gfc_copy_expr (c->expr); |
1299 | |
1300 | if (!gfc_simplify_expr (p, type)) |
1301 | { |
1302 | gfc_free_expr (p); |
1303 | continue; |
1304 | } |
1305 | |
1306 | gfc_replace_expr (c->expr, p); |
1307 | } |
1308 | } |
1309 | |
1310 | return true; |
1311 | } |
1312 | |
1313 | |
1314 | /* Pull a single array element out of an array constructor. */ |
1315 | |
1316 | static bool |
1317 | find_array_element (gfc_constructor_base base, gfc_array_ref *ar, |
1318 | gfc_constructor **rval) |
1319 | { |
1320 | unsigned long nelemen; |
1321 | int i; |
1322 | mpz_t delta; |
1323 | mpz_t offset; |
1324 | mpz_t span; |
1325 | mpz_t tmp; |
1326 | gfc_constructor *cons; |
1327 | gfc_expr *e; |
1328 | bool t; |
1329 | |
1330 | t = true; |
1331 | e = NULL__null; |
1332 | |
1333 | mpz_init_set_ui__gmpz_init_set_ui (offset, 0); |
1334 | mpz_init__gmpz_init (delta); |
1335 | mpz_init__gmpz_init (tmp); |
1336 | mpz_init_set_ui__gmpz_init_set_ui (span, 1); |
1337 | for (i = 0; i < ar->dimen; i++) |
1338 | { |
1339 | if (!gfc_reduce_init_expr (ar->as->lower[i]) |
1340 | || !gfc_reduce_init_expr (ar->as->upper[i])) |
1341 | { |
1342 | t = false; |
1343 | cons = NULL__null; |
1344 | goto depart; |
1345 | } |
1346 | |
1347 | e = ar->start[i]; |
1348 | if (e->expr_type != EXPR_CONSTANT) |
1349 | { |
1350 | cons = NULL__null; |
1351 | goto depart; |
1352 | } |
1353 | |
1354 | gcc_assert (ar->as->upper[i]->expr_type == EXPR_CONSTANT((void)(!(ar->as->upper[i]->expr_type == EXPR_CONSTANT && ar->as->lower[i]->expr_type == EXPR_CONSTANT ) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 1355, __FUNCTION__), 0 : 0)) |
1355 | && ar->as->lower[i]->expr_type == EXPR_CONSTANT)((void)(!(ar->as->upper[i]->expr_type == EXPR_CONSTANT && ar->as->lower[i]->expr_type == EXPR_CONSTANT ) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 1355, __FUNCTION__), 0 : 0)); |
1356 | |
1357 | /* Check the bounds. */ |
1358 | if ((ar->as->upper[i] |
1359 | && mpz_cmp__gmpz_cmp (e->value.integer, |
1360 | ar->as->upper[i]->value.integer) > 0) |
1361 | || (mpz_cmp__gmpz_cmp (e->value.integer, |
1362 | ar->as->lower[i]->value.integer) < 0)) |
1363 | { |
1364 | gfc_error ("Index in dimension %d is out of bounds " |
1365 | "at %L", i + 1, &ar->c_where[i]); |
1366 | cons = NULL__null; |
1367 | t = false; |
1368 | goto depart; |
1369 | } |
1370 | |
1371 | mpz_sub__gmpz_sub (delta, e->value.integer, ar->as->lower[i]->value.integer); |
1372 | mpz_mul__gmpz_mul (delta, delta, span); |
1373 | mpz_add__gmpz_add (offset, offset, delta); |
1374 | |
1375 | mpz_set_ui__gmpz_set_ui (tmp, 1); |
1376 | mpz_add__gmpz_add (tmp, tmp, ar->as->upper[i]->value.integer); |
1377 | mpz_sub__gmpz_sub (tmp, tmp, ar->as->lower[i]->value.integer); |
1378 | mpz_mul__gmpz_mul (span, span, tmp); |
1379 | } |
1380 | |
1381 | for (cons = gfc_constructor_first (base), nelemen = mpz_get_ui__gmpz_get_ui (offset); |
1382 | cons && nelemen > 0; cons = gfc_constructor_next (cons), nelemen--) |
1383 | { |
1384 | if (cons->iterator) |
1385 | { |
1386 | cons = NULL__null; |
1387 | goto depart; |
1388 | } |
1389 | } |
1390 | |
1391 | depart: |
1392 | mpz_clear__gmpz_clear (delta); |
1393 | mpz_clear__gmpz_clear (offset); |
1394 | mpz_clear__gmpz_clear (span); |
1395 | mpz_clear__gmpz_clear (tmp); |
1396 | *rval = cons; |
1397 | return t; |
1398 | } |
1399 | |
1400 | |
1401 | /* Find a component of a structure constructor. */ |
1402 | |
1403 | static gfc_constructor * |
1404 | find_component_ref (gfc_constructor_base base, gfc_ref *ref) |
1405 | { |
1406 | gfc_component *pick = ref->u.c.component; |
1407 | gfc_constructor *c = gfc_constructor_first (base); |
1408 | |
1409 | gfc_symbol *dt = ref->u.c.sym; |
1410 | int ext = dt->attr.extension; |
1411 | |
1412 | /* For extended types, check if the desired component is in one of the |
1413 | * parent types. */ |
1414 | while (ext > 0 && gfc_find_component (dt->components->ts.u.derived, |
1415 | pick->name, true, true, NULL__null)) |
1416 | { |
1417 | dt = dt->components->ts.u.derived; |
1418 | c = gfc_constructor_first (c->expr->value.constructor); |
1419 | ext--; |
1420 | } |
1421 | |
1422 | gfc_component *comp = dt->components; |
1423 | while (comp != pick) |
1424 | { |
1425 | comp = comp->next; |
1426 | c = gfc_constructor_next (c); |
1427 | } |
1428 | |
1429 | return c; |
1430 | } |
1431 | |
1432 | |
1433 | /* Replace an expression with the contents of a constructor, removing |
1434 | the subobject reference in the process. */ |
1435 | |
1436 | static void |
1437 | remove_subobject_ref (gfc_expr *p, gfc_constructor *cons) |
1438 | { |
1439 | gfc_expr *e; |
1440 | |
1441 | if (cons) |
1442 | { |
1443 | e = cons->expr; |
1444 | cons->expr = NULL__null; |
1445 | } |
1446 | else |
1447 | e = gfc_copy_expr (p); |
1448 | e->ref = p->ref->next; |
1449 | p->ref->next = NULL__null; |
1450 | gfc_replace_expr (p, e); |
1451 | } |
1452 | |
1453 | |
1454 | /* Pull an array section out of an array constructor. */ |
1455 | |
1456 | static bool |
1457 | find_array_section (gfc_expr *expr, gfc_ref *ref) |
1458 | { |
1459 | int idx; |
1460 | int rank; |
1461 | int d; |
1462 | int shape_i; |
1463 | int limit; |
1464 | long unsigned one = 1; |
1465 | bool incr_ctr; |
1466 | mpz_t start[GFC_MAX_DIMENSIONS15]; |
1467 | mpz_t end[GFC_MAX_DIMENSIONS15]; |
1468 | mpz_t stride[GFC_MAX_DIMENSIONS15]; |
1469 | mpz_t delta[GFC_MAX_DIMENSIONS15]; |
1470 | mpz_t ctr[GFC_MAX_DIMENSIONS15]; |
1471 | mpz_t delta_mpz; |
1472 | mpz_t tmp_mpz; |
1473 | mpz_t nelts; |
1474 | mpz_t ptr; |
1475 | gfc_constructor_base base; |
1476 | gfc_constructor *cons, *vecsub[GFC_MAX_DIMENSIONS15]; |
1477 | gfc_expr *begin; |
1478 | gfc_expr *finish; |
1479 | gfc_expr *step; |
1480 | gfc_expr *upper; |
1481 | gfc_expr *lower; |
1482 | bool t; |
1483 | |
1484 | t = true; |
1485 | |
1486 | base = expr->value.constructor; |
1487 | expr->value.constructor = NULL__null; |
1488 | |
1489 | rank = ref->u.ar.as->rank; |
1490 | |
1491 | if (expr->shape == NULL__null) |
1492 | expr->shape = gfc_get_shape (rank)(((mpz_t *) xcalloc (((rank)), sizeof (mpz_t)))); |
1493 | |
1494 | mpz_init_set_ui__gmpz_init_set_ui (delta_mpz, one); |
1495 | mpz_init_set_ui__gmpz_init_set_ui (nelts, one); |
1496 | mpz_init__gmpz_init (tmp_mpz); |
1497 | |
1498 | /* Do the initialization now, so that we can cleanup without |
1499 | keeping track of where we were. */ |
1500 | for (d = 0; d < rank; d++) |
1501 | { |
1502 | mpz_init__gmpz_init (delta[d]); |
1503 | mpz_init__gmpz_init (start[d]); |
1504 | mpz_init__gmpz_init (end[d]); |
1505 | mpz_init__gmpz_init (ctr[d]); |
1506 | mpz_init__gmpz_init (stride[d]); |
1507 | vecsub[d] = NULL__null; |
1508 | } |
1509 | |
1510 | /* Build the counters to clock through the array reference. */ |
1511 | shape_i = 0; |
1512 | for (d = 0; d < rank; d++) |
1513 | { |
1514 | /* Make this stretch of code easier on the eye! */ |
1515 | begin = ref->u.ar.start[d]; |
1516 | finish = ref->u.ar.end[d]; |
1517 | step = ref->u.ar.stride[d]; |
1518 | lower = ref->u.ar.as->lower[d]; |
1519 | upper = ref->u.ar.as->upper[d]; |
1520 | |
1521 | if (ref->u.ar.dimen_type[d] == DIMEN_VECTOR) /* Vector subscript. */ |
1522 | { |
1523 | gfc_constructor *ci; |
1524 | gcc_assert (begin)((void)(!(begin) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 1524, __FUNCTION__), 0 : 0)); |
1525 | |
1526 | if (begin->expr_type != EXPR_ARRAY || !gfc_is_constant_expr (begin)) |
1527 | { |
1528 | t = false; |
1529 | goto cleanup; |
1530 | } |
1531 | |
1532 | gcc_assert (begin->rank == 1)((void)(!(begin->rank == 1) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 1532, __FUNCTION__), 0 : 0)); |
1533 | /* Zero-sized arrays have no shape and no elements, stop early. */ |
1534 | if (!begin->shape) |
1535 | { |
1536 | mpz_init_set_ui__gmpz_init_set_ui (nelts, 0); |
1537 | break; |
1538 | } |
1539 | |
1540 | vecsub[d] = gfc_constructor_first (begin->value.constructor); |
1541 | mpz_set__gmpz_set (ctr[d], vecsub[d]->expr->value.integer); |
1542 | mpz_mul__gmpz_mul (nelts, nelts, begin->shape[0]); |
1543 | mpz_set__gmpz_set (expr->shape[shape_i++], begin->shape[0]); |
1544 | |
1545 | /* Check bounds. */ |
1546 | for (ci = vecsub[d]; ci; ci = gfc_constructor_next (ci)) |
1547 | { |
1548 | if (mpz_cmp__gmpz_cmp (ci->expr->value.integer, upper->value.integer) > 0 |
1549 | || mpz_cmp__gmpz_cmp (ci->expr->value.integer, |
1550 | lower->value.integer) < 0) |
1551 | { |
1552 | gfc_error ("index in dimension %d is out of bounds " |
1553 | "at %L", d + 1, &ref->u.ar.c_where[d]); |
1554 | t = false; |
1555 | goto cleanup; |
1556 | } |
1557 | } |
1558 | } |
1559 | else |
1560 | { |
1561 | if ((begin && begin->expr_type != EXPR_CONSTANT) |
1562 | || (finish && finish->expr_type != EXPR_CONSTANT) |
1563 | || (step && step->expr_type != EXPR_CONSTANT)) |
1564 | { |
1565 | t = false; |
1566 | goto cleanup; |
1567 | } |
1568 | |
1569 | /* Obtain the stride. */ |
1570 | if (step) |
1571 | mpz_set__gmpz_set (stride[d], step->value.integer); |
1572 | else |
1573 | mpz_set_ui__gmpz_set_ui (stride[d], one); |
1574 | |
1575 | if (mpz_cmp_ui (stride[d], 0)(__builtin_constant_p (0) && (0) == 0 ? ((stride[d])-> _mp_size < 0 ? -1 : (stride[d])->_mp_size > 0) : __gmpz_cmp_ui (stride[d],0)) == 0) |
1576 | mpz_set_ui__gmpz_set_ui (stride[d], one); |
1577 | |
1578 | /* Obtain the start value for the index. */ |
1579 | if (begin) |
1580 | mpz_set__gmpz_set (start[d], begin->value.integer); |
1581 | else |
1582 | mpz_set__gmpz_set (start[d], lower->value.integer); |
1583 | |
1584 | mpz_set__gmpz_set (ctr[d], start[d]); |
1585 | |
1586 | /* Obtain the end value for the index. */ |
1587 | if (finish) |
1588 | mpz_set__gmpz_set (end[d], finish->value.integer); |
1589 | else |
1590 | mpz_set__gmpz_set (end[d], upper->value.integer); |
1591 | |
1592 | /* Separate 'if' because elements sometimes arrive with |
1593 | non-null end. */ |
1594 | if (ref->u.ar.dimen_type[d] == DIMEN_ELEMENT) |
1595 | mpz_set__gmpz_set (end [d], begin->value.integer); |
1596 | |
1597 | /* Check the bounds. */ |
1598 | if (mpz_cmp__gmpz_cmp (ctr[d], upper->value.integer) > 0 |
1599 | || mpz_cmp__gmpz_cmp (end[d], upper->value.integer) > 0 |
1600 | || mpz_cmp__gmpz_cmp (ctr[d], lower->value.integer) < 0 |
1601 | || mpz_cmp__gmpz_cmp (end[d], lower->value.integer) < 0) |
1602 | { |
1603 | gfc_error ("index in dimension %d is out of bounds " |
1604 | "at %L", d + 1, &ref->u.ar.c_where[d]); |
1605 | t = false; |
1606 | goto cleanup; |
1607 | } |
1608 | |
1609 | /* Calculate the number of elements and the shape. */ |
1610 | mpz_set__gmpz_set (tmp_mpz, stride[d]); |
1611 | mpz_add__gmpz_add (tmp_mpz, end[d], tmp_mpz); |
1612 | mpz_sub__gmpz_sub (tmp_mpz, tmp_mpz, ctr[d]); |
1613 | mpz_div__gmpz_fdiv_q (tmp_mpz, tmp_mpz, stride[d]); |
1614 | mpz_mul__gmpz_mul (nelts, nelts, tmp_mpz); |
1615 | |
1616 | /* An element reference reduces the rank of the expression; don't |
1617 | add anything to the shape array. */ |
1618 | if (ref->u.ar.dimen_type[d] != DIMEN_ELEMENT) |
1619 | mpz_set__gmpz_set (expr->shape[shape_i++], tmp_mpz); |
1620 | } |
1621 | |
1622 | /* Calculate the 'stride' (=delta) for conversion of the |
1623 | counter values into the index along the constructor. */ |
1624 | mpz_set__gmpz_set (delta[d], delta_mpz); |
1625 | mpz_sub__gmpz_sub (tmp_mpz, upper->value.integer, lower->value.integer); |
1626 | mpz_add_ui__gmpz_add_ui (tmp_mpz, tmp_mpz, one); |
1627 | mpz_mul__gmpz_mul (delta_mpz, delta_mpz, tmp_mpz); |
1628 | } |
1629 | |
1630 | mpz_init__gmpz_init (ptr); |
1631 | cons = gfc_constructor_first (base); |
1632 | |
1633 | /* Now clock through the array reference, calculating the index in |
1634 | the source constructor and transferring the elements to the new |
1635 | constructor. */ |
1636 | for (idx = 0; idx < (int) mpz_get_si__gmpz_get_si (nelts); idx++) |
1637 | { |
1638 | mpz_init_set_ui__gmpz_init_set_ui (ptr, 0); |
1639 | |
1640 | incr_ctr = true; |
1641 | for (d = 0; d < rank; d++) |
1642 | { |
1643 | mpz_set__gmpz_set (tmp_mpz, ctr[d]); |
1644 | mpz_sub__gmpz_sub (tmp_mpz, tmp_mpz, ref->u.ar.as->lower[d]->value.integer); |
1645 | mpz_mul__gmpz_mul (tmp_mpz, tmp_mpz, delta[d]); |
1646 | mpz_add__gmpz_add (ptr, ptr, tmp_mpz); |
1647 | |
1648 | if (!incr_ctr) continue; |
1649 | |
1650 | if (ref->u.ar.dimen_type[d] == DIMEN_VECTOR) /* Vector subscript. */ |
1651 | { |
1652 | gcc_assert(vecsub[d])((void)(!(vecsub[d]) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 1652, __FUNCTION__), 0 : 0)); |
1653 | |
1654 | if (!gfc_constructor_next (vecsub[d])) |
1655 | vecsub[d] = gfc_constructor_first (ref->u.ar.start[d]->value.constructor); |
1656 | else |
1657 | { |
1658 | vecsub[d] = gfc_constructor_next (vecsub[d]); |
1659 | incr_ctr = false; |
1660 | } |
1661 | mpz_set__gmpz_set (ctr[d], vecsub[d]->expr->value.integer); |
1662 | } |
1663 | else |
1664 | { |
1665 | mpz_add__gmpz_add (ctr[d], ctr[d], stride[d]); |
1666 | |
1667 | if (mpz_cmp_ui (stride[d], 0)(__builtin_constant_p (0) && (0) == 0 ? ((stride[d])-> _mp_size < 0 ? -1 : (stride[d])->_mp_size > 0) : __gmpz_cmp_ui (stride[d],0)) > 0 |
1668 | ? mpz_cmp__gmpz_cmp (ctr[d], end[d]) > 0 |
1669 | : mpz_cmp__gmpz_cmp (ctr[d], end[d]) < 0) |
1670 | mpz_set__gmpz_set (ctr[d], start[d]); |
1671 | else |
1672 | incr_ctr = false; |
1673 | } |
1674 | } |
1675 | |
1676 | limit = mpz_get_ui__gmpz_get_ui (ptr); |
1677 | if (limit >= flag_max_array_constructorglobal_options.x_flag_max_array_constructor) |
1678 | { |
1679 | gfc_error ("The number of elements in the array constructor " |
1680 | "at %L requires an increase of the allowed %d " |
1681 | "upper limit. See %<-fmax-array-constructor%> " |
1682 | "option", &expr->where, flag_max_array_constructorglobal_options.x_flag_max_array_constructor); |
1683 | return false; |
1684 | } |
1685 | |
1686 | cons = gfc_constructor_lookup (base, limit); |
1687 | gcc_assert (cons)((void)(!(cons) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 1687, __FUNCTION__), 0 : 0)); |
1688 | gfc_constructor_append_expr (&expr->value.constructor, |
1689 | gfc_copy_expr (cons->expr), NULL__null); |
1690 | } |
1691 | |
1692 | mpz_clear__gmpz_clear (ptr); |
1693 | |
1694 | cleanup: |
1695 | |
1696 | mpz_clear__gmpz_clear (delta_mpz); |
1697 | mpz_clear__gmpz_clear (tmp_mpz); |
1698 | mpz_clear__gmpz_clear (nelts); |
1699 | for (d = 0; d < rank; d++) |
1700 | { |
1701 | mpz_clear__gmpz_clear (delta[d]); |
1702 | mpz_clear__gmpz_clear (start[d]); |
1703 | mpz_clear__gmpz_clear (end[d]); |
1704 | mpz_clear__gmpz_clear (ctr[d]); |
1705 | mpz_clear__gmpz_clear (stride[d]); |
1706 | } |
1707 | gfc_constructor_free (base); |
1708 | return t; |
1709 | } |
1710 | |
1711 | /* Pull a substring out of an expression. */ |
1712 | |
1713 | static bool |
1714 | find_substring_ref (gfc_expr *p, gfc_expr **newp) |
1715 | { |
1716 | gfc_charlen_t end; |
1717 | gfc_charlen_t start; |
1718 | gfc_charlen_t length; |
1719 | gfc_char_t *chr; |
1720 | |
1721 | if (p->ref->u.ss.start->expr_type != EXPR_CONSTANT |
1722 | || p->ref->u.ss.end->expr_type != EXPR_CONSTANT) |
1723 | return false; |
1724 | |
1725 | *newp = gfc_copy_expr (p); |
1726 | free ((*newp)->value.character.string); |
1727 | |
1728 | end = (gfc_charlen_t) mpz_get_ui__gmpz_get_ui (p->ref->u.ss.end->value.integer); |
1729 | start = (gfc_charlen_t) mpz_get_ui__gmpz_get_ui (p->ref->u.ss.start->value.integer); |
1730 | if (end >= start) |
1731 | length = end - start + 1; |
1732 | else |
1733 | length = 0; |
1734 | |
1735 | chr = (*newp)->value.character.string = gfc_get_wide_string (length + 1)((gfc_char_t *) xcalloc ((length + 1), sizeof (gfc_char_t))); |
1736 | (*newp)->value.character.length = length; |
1737 | memcpy (chr, &p->value.character.string[start - 1], |
1738 | length * sizeof (gfc_char_t)); |
1739 | chr[length] = '\0'; |
1740 | return true; |
1741 | } |
1742 | |
1743 | |
1744 | /* Pull an inquiry result out of an expression. */ |
1745 | |
1746 | static bool |
1747 | find_inquiry_ref (gfc_expr *p, gfc_expr **newp) |
1748 | { |
1749 | gfc_ref *ref; |
1750 | gfc_ref *inquiry = NULL__null; |
1751 | gfc_expr *tmp; |
1752 | |
1753 | tmp = gfc_copy_expr (p); |
1754 | |
1755 | if (tmp->ref && tmp->ref->type == REF_INQUIRY) |
1756 | { |
1757 | inquiry = tmp->ref; |
1758 | tmp->ref = NULL__null; |
1759 | } |
1760 | else |
1761 | { |
1762 | for (ref = tmp->ref; ref; ref = ref->next) |
1763 | if (ref->next && ref->next->type == REF_INQUIRY) |
1764 | { |
1765 | inquiry = ref->next; |
1766 | ref->next = NULL__null; |
1767 | } |
1768 | } |
1769 | |
1770 | if (!inquiry) |
1771 | { |
1772 | gfc_free_expr (tmp); |
1773 | return false; |
1774 | } |
1775 | |
1776 | gfc_resolve_expr (tmp); |
1777 | |
1778 | /* In principle there can be more than one inquiry reference. */ |
1779 | for (; inquiry; inquiry = inquiry->next) |
1780 | { |
1781 | switch (inquiry->u.i) |
1782 | { |
1783 | case INQUIRY_LEN: |
1784 | if (tmp->ts.type != BT_CHARACTER) |
1785 | goto cleanup; |
1786 | |
1787 | if (!gfc_notify_std (GFC_STD_F2003(1<<4), "LEN part_ref at %C")) |
1788 | goto cleanup; |
1789 | |
1790 | if (tmp->ts.u.cl->length |
1791 | && tmp->ts.u.cl->length->expr_type == EXPR_CONSTANT) |
1792 | *newp = gfc_copy_expr (tmp->ts.u.cl->length); |
1793 | else if (tmp->expr_type == EXPR_CONSTANT) |
1794 | *newp = gfc_get_int_expr (gfc_default_integer_kind, |
1795 | NULL__null, tmp->value.character.length); |
1796 | else |
1797 | goto cleanup; |
1798 | |
1799 | break; |
1800 | |
1801 | case INQUIRY_KIND: |
1802 | if (tmp->ts.type == BT_DERIVED || tmp->ts.type == BT_CLASS) |
1803 | goto cleanup; |
1804 | |
1805 | if (!gfc_notify_std (GFC_STD_F2003(1<<4), "KIND part_ref at %C")) |
1806 | goto cleanup; |
1807 | |
1808 | *newp = gfc_get_int_expr (gfc_default_integer_kind, |
1809 | NULL__null, tmp->ts.kind); |
1810 | break; |
1811 | |
1812 | case INQUIRY_RE: |
1813 | if (tmp->ts.type != BT_COMPLEX || tmp->expr_type != EXPR_CONSTANT) |
1814 | goto cleanup; |
1815 | |
1816 | if (!gfc_notify_std (GFC_STD_F2008(1<<7), "RE part_ref at %C")) |
1817 | goto cleanup; |
1818 | |
1819 | *newp = gfc_get_constant_expr (BT_REAL, tmp->ts.kind, &tmp->where); |
1820 | mpfr_set ((*newp)->value.real,mpfr_set4((*newp)->value.real,((tmp->value.complex)-> re),MPFR_RNDN,((((tmp->value.complex)->re))->_mpfr_sign )) |
1821 | mpc_realref (tmp->value.complex), GFC_RND_MODE)mpfr_set4((*newp)->value.real,((tmp->value.complex)-> re),MPFR_RNDN,((((tmp->value.complex)->re))->_mpfr_sign )); |
1822 | break; |
1823 | |
1824 | case INQUIRY_IM: |
1825 | if (tmp->ts.type != BT_COMPLEX || tmp->expr_type != EXPR_CONSTANT) |
1826 | goto cleanup; |
1827 | |
1828 | if (!gfc_notify_std (GFC_STD_F2008(1<<7), "IM part_ref at %C")) |
1829 | goto cleanup; |
1830 | |
1831 | *newp = gfc_get_constant_expr (BT_REAL, tmp->ts.kind, &tmp->where); |
1832 | mpfr_set ((*newp)->value.real,mpfr_set4((*newp)->value.real,((tmp->value.complex)-> im),MPFR_RNDN,((((tmp->value.complex)->im))->_mpfr_sign )) |
1833 | mpc_imagref (tmp->value.complex), GFC_RND_MODE)mpfr_set4((*newp)->value.real,((tmp->value.complex)-> im),MPFR_RNDN,((((tmp->value.complex)->im))->_mpfr_sign )); |
1834 | break; |
1835 | } |
1836 | tmp = gfc_copy_expr (*newp); |
1837 | } |
1838 | |
1839 | if (!(*newp)) |
1840 | goto cleanup; |
1841 | else if ((*newp)->expr_type != EXPR_CONSTANT) |
1842 | { |
1843 | gfc_free_expr (*newp); |
1844 | goto cleanup; |
1845 | } |
1846 | |
1847 | gfc_free_expr (tmp); |
1848 | return true; |
1849 | |
1850 | cleanup: |
1851 | gfc_free_expr (tmp); |
1852 | return false; |
1853 | } |
1854 | |
1855 | |
1856 | |
1857 | /* Simplify a subobject reference of a constructor. This occurs when |
1858 | parameter variable values are substituted. */ |
1859 | |
1860 | static bool |
1861 | simplify_const_ref (gfc_expr *p) |
1862 | { |
1863 | gfc_constructor *cons, *c; |
1864 | gfc_expr *newp = NULL__null; |
1865 | gfc_ref *last_ref; |
1866 | |
1867 | while (p->ref) |
1868 | { |
1869 | switch (p->ref->type) |
1870 | { |
1871 | case REF_ARRAY: |
1872 | switch (p->ref->u.ar.type) |
1873 | { |
1874 | case AR_ELEMENT: |
1875 | /* <type/kind spec>, parameter :: x(<int>) = scalar_expr |
1876 | will generate this. */ |
1877 | if (p->expr_type != EXPR_ARRAY) |
1878 | { |
1879 | remove_subobject_ref (p, NULL__null); |
1880 | break; |
1881 | } |
1882 | if (!find_array_element (p->value.constructor, &p->ref->u.ar, &cons)) |
1883 | return false; |
1884 | |
1885 | if (!cons) |
1886 | return true; |
1887 | |
1888 | remove_subobject_ref (p, cons); |
1889 | break; |
1890 | |
1891 | case AR_SECTION: |
1892 | if (!find_array_section (p, p->ref)) |
1893 | return false; |
1894 | p->ref->u.ar.type = AR_FULL; |
1895 | |
1896 | /* Fall through. */ |
1897 | |
1898 | case AR_FULL: |
1899 | if (p->ref->next != NULL__null |
1900 | && (p->ts.type == BT_CHARACTER || gfc_bt_struct (p->ts.type)((p->ts.type) == BT_DERIVED || (p->ts.type) == BT_UNION ))) |
1901 | { |
1902 | for (c = gfc_constructor_first (p->value.constructor); |
1903 | c; c = gfc_constructor_next (c)) |
1904 | { |
1905 | c->expr->ref = gfc_copy_ref (p->ref->next); |
1906 | if (!simplify_const_ref (c->expr)) |
1907 | return false; |
1908 | } |
1909 | |
1910 | if (gfc_bt_struct (p->ts.type)((p->ts.type) == BT_DERIVED || (p->ts.type) == BT_UNION ) |
1911 | && p->ref->next |
1912 | && (c = gfc_constructor_first (p->value.constructor))) |
1913 | { |
1914 | /* There may have been component references. */ |
1915 | p->ts = c->expr->ts; |
1916 | } |
1917 | |
1918 | last_ref = p->ref; |
1919 | for (; last_ref->next; last_ref = last_ref->next) {}; |
1920 | |
1921 | if (p->ts.type == BT_CHARACTER |
1922 | && last_ref->type == REF_SUBSTRING) |
1923 | { |
1924 | /* If this is a CHARACTER array and we possibly took |
1925 | a substring out of it, update the type-spec's |
1926 | character length according to the first element |
1927 | (as all should have the same length). */ |
1928 | gfc_charlen_t string_len; |
1929 | if ((c = gfc_constructor_first (p->value.constructor))) |
1930 | { |
1931 | const gfc_expr* first = c->expr; |
1932 | gcc_assert (first->expr_type == EXPR_CONSTANT)((void)(!(first->expr_type == EXPR_CONSTANT) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 1932, __FUNCTION__), 0 : 0)); |
1933 | gcc_assert (first->ts.type == BT_CHARACTER)((void)(!(first->ts.type == BT_CHARACTER) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 1933, __FUNCTION__), 0 : 0)); |
1934 | string_len = first->value.character.length; |
1935 | } |
1936 | else |
1937 | string_len = 0; |
1938 | |
1939 | if (!p->ts.u.cl) |
1940 | { |
1941 | if (p->symtree) |
1942 | p->ts.u.cl = gfc_new_charlen (p->symtree->n.sym->ns, |
1943 | NULL__null); |
1944 | else |
1945 | p->ts.u.cl = gfc_new_charlen (gfc_current_ns, |
1946 | NULL__null); |
1947 | } |
1948 | else |
1949 | gfc_free_expr (p->ts.u.cl->length); |
1950 | |
1951 | p->ts.u.cl->length |
1952 | = gfc_get_int_expr (gfc_charlen_int_kind, |
1953 | NULL__null, string_len); |
1954 | } |
1955 | } |
1956 | gfc_free_ref_list (p->ref); |
1957 | p->ref = NULL__null; |
1958 | break; |
1959 | |
1960 | default: |
1961 | return true; |
1962 | } |
1963 | |
1964 | break; |
1965 | |
1966 | case REF_COMPONENT: |
1967 | cons = find_component_ref (p->value.constructor, p->ref); |
1968 | remove_subobject_ref (p, cons); |
1969 | break; |
1970 | |
1971 | case REF_INQUIRY: |
1972 | if (!find_inquiry_ref (p, &newp)) |
1973 | return false; |
1974 | |
1975 | gfc_replace_expr (p, newp); |
1976 | gfc_free_ref_list (p->ref); |
1977 | p->ref = NULL__null; |
1978 | break; |
1979 | |
1980 | case REF_SUBSTRING: |
1981 | if (!find_substring_ref (p, &newp)) |
1982 | return false; |
1983 | |
1984 | gfc_replace_expr (p, newp); |
1985 | gfc_free_ref_list (p->ref); |
1986 | p->ref = NULL__null; |
1987 | break; |
1988 | } |
1989 | } |
1990 | |
1991 | return true; |
1992 | } |
1993 | |
1994 | |
1995 | /* Simplify a chain of references. */ |
1996 | |
1997 | static bool |
1998 | simplify_ref_chain (gfc_ref *ref, int type, gfc_expr **p) |
1999 | { |
2000 | int n; |
2001 | gfc_expr *newp; |
2002 | |
2003 | for (; ref; ref = ref->next) |
2004 | { |
2005 | switch (ref->type) |
2006 | { |
2007 | case REF_ARRAY: |
2008 | for (n = 0; n < ref->u.ar.dimen; n++) |
2009 | { |
2010 | if (!gfc_simplify_expr (ref->u.ar.start[n], type)) |
2011 | return false; |
2012 | if (!gfc_simplify_expr (ref->u.ar.end[n], type)) |
2013 | return false; |
2014 | if (!gfc_simplify_expr (ref->u.ar.stride[n], type)) |
2015 | return false; |
2016 | } |
2017 | break; |
2018 | |
2019 | case REF_SUBSTRING: |
2020 | if (!gfc_simplify_expr (ref->u.ss.start, type)) |
2021 | return false; |
2022 | if (!gfc_simplify_expr (ref->u.ss.end, type)) |
2023 | return false; |
2024 | break; |
2025 | |
2026 | case REF_INQUIRY: |
2027 | if (!find_inquiry_ref (*p, &newp)) |
2028 | return false; |
2029 | |
2030 | gfc_replace_expr (*p, newp); |
2031 | gfc_free_ref_list ((*p)->ref); |
2032 | (*p)->ref = NULL__null; |
2033 | return true; |
2034 | |
2035 | default: |
2036 | break; |
2037 | } |
2038 | } |
2039 | return true; |
2040 | } |
2041 | |
2042 | |
2043 | /* Try to substitute the value of a parameter variable. */ |
2044 | |
2045 | static bool |
2046 | simplify_parameter_variable (gfc_expr *p, int type) |
2047 | { |
2048 | gfc_expr *e; |
2049 | bool t; |
2050 | |
2051 | /* Set rank and check array ref; as resolve_variable calls |
2052 | gfc_simplify_expr, call gfc_resolve_ref + gfc_expression_rank instead. */ |
2053 | if (!gfc_resolve_ref (p)) |
2054 | { |
2055 | gfc_error_check (); |
2056 | return false; |
2057 | } |
2058 | gfc_expression_rank (p); |
2059 | |
2060 | /* Is this an inquiry? */ |
2061 | bool inquiry = false; |
2062 | gfc_ref* ref = p->ref; |
2063 | while (ref) |
2064 | { |
2065 | if (ref->type == REF_INQUIRY) |
2066 | break; |
2067 | ref = ref->next; |
2068 | } |
2069 | if (ref && ref->type == REF_INQUIRY) |
2070 | inquiry = ref->u.i == INQUIRY_LEN || ref->u.i == INQUIRY_KIND; |
2071 | |
2072 | if (gfc_is_size_zero_array (p)) |
2073 | { |
2074 | if (p->expr_type == EXPR_ARRAY) |
2075 | return true; |
2076 | |
2077 | e = gfc_get_expr (); |
2078 | e->expr_type = EXPR_ARRAY; |
2079 | e->ts = p->ts; |
2080 | e->rank = p->rank; |
2081 | e->value.constructor = NULL__null; |
2082 | e->shape = gfc_copy_shape (p->shape, p->rank); |
2083 | e->where = p->where; |
2084 | /* If %kind and %len are not used then we're done, otherwise |
2085 | drop through for simplification. */ |
2086 | if (!inquiry) |
2087 | { |
2088 | gfc_replace_expr (p, e); |
2089 | return true; |
2090 | } |
2091 | } |
2092 | else |
2093 | { |
2094 | e = gfc_copy_expr (p->symtree->n.sym->value); |
2095 | if (e == NULL__null) |
2096 | return false; |
2097 | |
2098 | e->rank = p->rank; |
2099 | |
2100 | if (e->ts.type == BT_CHARACTER && p->ts.u.cl) |
2101 | e->ts = p->ts; |
2102 | } |
2103 | |
2104 | if (e->ts.type == BT_CHARACTER && e->ts.u.cl == NULL__null) |
2105 | e->ts.u.cl = gfc_new_charlen (gfc_current_ns, p->ts.u.cl); |
2106 | |
2107 | /* Do not copy subobject refs for constant. */ |
2108 | if (e->expr_type != EXPR_CONSTANT && p->ref != NULL__null) |
2109 | e->ref = gfc_copy_ref (p->ref); |
2110 | t = gfc_simplify_expr (e, type); |
2111 | e->where = p->where; |
2112 | |
2113 | /* Only use the simplification if it eliminated all subobject references. */ |
2114 | if (t && !e->ref) |
2115 | gfc_replace_expr (p, e); |
2116 | else |
2117 | gfc_free_expr (e); |
2118 | |
2119 | return t; |
2120 | } |
2121 | |
2122 | |
2123 | static bool |
2124 | scalarize_intrinsic_call (gfc_expr *, bool init_flag); |
2125 | |
2126 | /* Given an expression, simplify it by collapsing constant |
2127 | expressions. Most simplification takes place when the expression |
2128 | tree is being constructed. If an intrinsic function is simplified |
2129 | at some point, we get called again to collapse the result against |
2130 | other constants. |
2131 | |
2132 | We work by recursively simplifying expression nodes, simplifying |
2133 | intrinsic functions where possible, which can lead to further |
2134 | constant collapsing. If an operator has constant operand(s), we |
2135 | rip the expression apart, and rebuild it, hoping that it becomes |
2136 | something simpler. |
2137 | |
2138 | The expression type is defined for: |
2139 | 0 Basic expression parsing |
2140 | 1 Simplifying array constructors -- will substitute |
2141 | iterator values. |
2142 | Returns false on error, true otherwise. |
2143 | NOTE: Will return true even if the expression cannot be simplified. */ |
2144 | |
2145 | bool |
2146 | gfc_simplify_expr (gfc_expr *p, int type) |
2147 | { |
2148 | gfc_actual_arglist *ap; |
2149 | gfc_intrinsic_sym* isym = NULL__null; |
2150 | |
2151 | |
2152 | if (p == NULL__null) |
2153 | return true; |
2154 | |
2155 | switch (p->expr_type) |
2156 | { |
2157 | case EXPR_CONSTANT: |
2158 | if (p->ref && p->ref->type == REF_INQUIRY) |
2159 | simplify_ref_chain (p->ref, type, &p); |
2160 | break; |
2161 | case EXPR_NULL: |
2162 | break; |
2163 | |
2164 | case EXPR_FUNCTION: |
2165 | // For array-bound functions, we don't need to optimize |
2166 | // the 'array' argument. In particular, if the argument |
2167 | // is a PARAMETER, simplifying might convert an EXPR_VARIABLE |
2168 | // into an EXPR_ARRAY; the latter has lbound = 1, the former |
2169 | // can have any lbound. |
2170 | ap = p->value.function.actual; |
2171 | if (p->value.function.isym && |
2172 | (p->value.function.isym->id == GFC_ISYM_LBOUND |
2173 | || p->value.function.isym->id == GFC_ISYM_UBOUND |
2174 | || p->value.function.isym->id == GFC_ISYM_LCOBOUND |
2175 | || p->value.function.isym->id == GFC_ISYM_UCOBOUND)) |
2176 | ap = ap->next; |
2177 | |
2178 | for ( ; ap; ap = ap->next) |
2179 | if (!gfc_simplify_expr (ap->expr, type)) |
2180 | return false; |
2181 | |
2182 | if (p->value.function.isym != NULL__null |
2183 | && gfc_intrinsic_func_interface (p, 1) == MATCH_ERROR) |
2184 | return false; |
2185 | |
2186 | if (p->expr_type == EXPR_FUNCTION) |
2187 | { |
2188 | if (p->symtree) |
2189 | isym = gfc_find_function (p->symtree->n.sym->name); |
2190 | if (isym && isym->elemental) |
2191 | scalarize_intrinsic_call (p, false); |
2192 | } |
2193 | |
2194 | break; |
2195 | |
2196 | case EXPR_SUBSTRING: |
2197 | if (!simplify_ref_chain (p->ref, type, &p)) |
2198 | return false; |
2199 | |
2200 | if (gfc_is_constant_expr (p)) |
2201 | { |
2202 | gfc_char_t *s; |
2203 | HOST_WIDE_INTlong start, end; |
2204 | |
2205 | start = 0; |
2206 | if (p->ref && p->ref->u.ss.start) |
2207 | { |
2208 | gfc_extract_hwi (p->ref->u.ss.start, &start); |
2209 | start--; /* Convert from one-based to zero-based. */ |
2210 | } |
2211 | |
2212 | end = p->value.character.length; |
2213 | if (p->ref && p->ref->u.ss.end) |
2214 | gfc_extract_hwi (p->ref->u.ss.end, &end); |
2215 | |
2216 | if (end < start) |
2217 | end = start; |
2218 | |
2219 | s = gfc_get_wide_string (end - start + 2)((gfc_char_t *) xcalloc ((end - start + 2), sizeof (gfc_char_t ))); |
2220 | memcpy (s, p->value.character.string + start, |
2221 | (end - start) * sizeof (gfc_char_t)); |
2222 | s[end - start + 1] = '\0'; /* TODO: C-style string. */ |
2223 | free (p->value.character.string); |
2224 | p->value.character.string = s; |
2225 | p->value.character.length = end - start; |
2226 | p->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL__null); |
2227 | p->ts.u.cl->length = gfc_get_int_expr (gfc_charlen_int_kind, |
2228 | NULL__null, |
2229 | p->value.character.length); |
2230 | gfc_free_ref_list (p->ref); |
2231 | p->ref = NULL__null; |
2232 | p->expr_type = EXPR_CONSTANT; |
2233 | } |
2234 | break; |
2235 | |
2236 | case EXPR_OP: |
2237 | if (!simplify_intrinsic_op (p, type)) |
2238 | return false; |
2239 | break; |
2240 | |
2241 | case EXPR_VARIABLE: |
2242 | /* Only substitute array parameter variables if we are in an |
2243 | initialization expression, or we want a subsection. */ |
2244 | if (p->symtree->n.sym->attr.flavor == FL_PARAMETER |
2245 | && (gfc_init_expr_flag || p->ref |
2246 | || p->symtree->n.sym->value->expr_type != EXPR_ARRAY)) |
2247 | { |
2248 | if (!simplify_parameter_variable (p, type)) |
2249 | return false; |
2250 | break; |
2251 | } |
2252 | |
2253 | if (type == 1) |
2254 | { |
2255 | gfc_simplify_iterator_var (p); |
2256 | } |
2257 | |
2258 | /* Simplify subcomponent references. */ |
2259 | if (!simplify_ref_chain (p->ref, type, &p)) |
2260 | return false; |
2261 | |
2262 | break; |
2263 | |
2264 | case EXPR_STRUCTURE: |
2265 | case EXPR_ARRAY: |
2266 | if (!simplify_ref_chain (p->ref, type, &p)) |
2267 | return false; |
2268 | |
2269 | /* If the following conditions hold, we found something like kind type |
2270 | inquiry of the form a(2)%kind while simplify the ref chain. */ |
2271 | if (p->expr_type == EXPR_CONSTANT && !p->ref && !p->rank && !p->shape) |
2272 | return true; |
2273 | |
2274 | if (!simplify_constructor (p->value.constructor, type)) |
2275 | return false; |
2276 | |
2277 | if (p->expr_type == EXPR_ARRAY && p->ref && p->ref->type == REF_ARRAY |
2278 | && p->ref->u.ar.type == AR_FULL) |
2279 | gfc_expand_constructor (p, false); |
2280 | |
2281 | if (!simplify_const_ref (p)) |
2282 | return false; |
2283 | |
2284 | break; |
2285 | |
2286 | case EXPR_COMPCALL: |
2287 | case EXPR_PPC: |
2288 | break; |
2289 | |
2290 | case EXPR_UNKNOWN: |
2291 | gcc_unreachable ()(fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 2291, __FUNCTION__)); |
2292 | } |
2293 | |
2294 | return true; |
2295 | } |
2296 | |
2297 | |
2298 | /* Returns the type of an expression with the exception that iterator |
2299 | variables are automatically integers no matter what else they may |
2300 | be declared as. */ |
2301 | |
2302 | static bt |
2303 | et0 (gfc_expr *e) |
2304 | { |
2305 | if (e->expr_type == EXPR_VARIABLE && gfc_check_iter_variable (e)) |
2306 | return BT_INTEGER; |
2307 | |
2308 | return e->ts.type; |
2309 | } |
2310 | |
2311 | |
2312 | /* Scalarize an expression for an elemental intrinsic call. */ |
2313 | |
2314 | static bool |
2315 | scalarize_intrinsic_call (gfc_expr *e, bool init_flag) |
2316 | { |
2317 | gfc_actual_arglist *a, *b; |
2318 | gfc_constructor_base ctor; |
2319 | gfc_constructor *args[5] = {}; /* Avoid uninitialized warnings. */ |
2320 | gfc_constructor *ci, *new_ctor; |
2321 | gfc_expr *expr, *old, *p; |
2322 | int n, i, rank[5], array_arg; |
2323 | |
2324 | if (e == NULL__null) |
2325 | return false; |
2326 | |
2327 | a = e->value.function.actual; |
2328 | for (; a; a = a->next) |
2329 | if (a->expr && !gfc_is_constant_expr (a->expr)) |
2330 | return false; |
2331 | |
2332 | /* Find which, if any, arguments are arrays. Assume that the old |
2333 | expression carries the type information and that the first arg |
2334 | that is an array expression carries all the shape information.*/ |
2335 | n = array_arg = 0; |
2336 | a = e->value.function.actual; |
2337 | for (; a; a = a->next) |
2338 | { |
2339 | n++; |
2340 | if (!a->expr || a->expr->expr_type != EXPR_ARRAY) |
2341 | continue; |
2342 | array_arg = n; |
2343 | expr = gfc_copy_expr (a->expr); |
2344 | break; |
2345 | } |
2346 | |
2347 | if (!array_arg) |
2348 | return false; |
2349 | |
2350 | old = gfc_copy_expr (e); |
2351 | |
2352 | gfc_constructor_free (expr->value.constructor); |
2353 | expr->value.constructor = NULL__null; |
2354 | expr->ts = old->ts; |
2355 | expr->where = old->where; |
2356 | expr->expr_type = EXPR_ARRAY; |
2357 | |
2358 | /* Copy the array argument constructors into an array, with nulls |
2359 | for the scalars. */ |
2360 | n = 0; |
2361 | a = old->value.function.actual; |
2362 | for (; a; a = a->next) |
2363 | { |
2364 | /* Check that this is OK for an initialization expression. */ |
2365 | if (a->expr && init_flag && !gfc_check_init_expr (a->expr)) |
2366 | goto cleanup; |
2367 | |
2368 | rank[n] = 0; |
2369 | if (a->expr && a->expr->rank && a->expr->expr_type == EXPR_VARIABLE) |
2370 | { |
2371 | rank[n] = a->expr->rank; |
2372 | ctor = a->expr->symtree->n.sym->value->value.constructor; |
2373 | args[n] = gfc_constructor_first (ctor); |
2374 | } |
2375 | else if (a->expr && a->expr->expr_type == EXPR_ARRAY) |
2376 | { |
2377 | if (a->expr->rank) |
2378 | rank[n] = a->expr->rank; |
2379 | else |
2380 | rank[n] = 1; |
2381 | ctor = gfc_constructor_copy (a->expr->value.constructor); |
2382 | args[n] = gfc_constructor_first (ctor); |
2383 | } |
2384 | else |
2385 | args[n] = NULL__null; |
2386 | |
2387 | n++; |
2388 | } |
2389 | |
2390 | /* Using the array argument as the master, step through the array |
2391 | calling the function for each element and advancing the array |
2392 | constructors together. */ |
2393 | for (ci = args[array_arg - 1]; ci; ci = gfc_constructor_next (ci)) |
2394 | { |
2395 | new_ctor = gfc_constructor_append_expr (&expr->value.constructor, |
2396 | gfc_copy_expr (old), NULL__null); |
2397 | |
2398 | gfc_free_actual_arglist (new_ctor->expr->value.function.actual); |
2399 | a = NULL__null; |
2400 | b = old->value.function.actual; |
2401 | for (i = 0; i < n; i++) |
2402 | { |
2403 | if (a == NULL__null) |
2404 | new_ctor->expr->value.function.actual |
2405 | = a = gfc_get_actual_arglist ()((gfc_actual_arglist *) xcalloc (1, sizeof (gfc_actual_arglist ))); |
2406 | else |
2407 | { |
2408 | a->next = gfc_get_actual_arglist ()((gfc_actual_arglist *) xcalloc (1, sizeof (gfc_actual_arglist ))); |
2409 | a = a->next; |
2410 | } |
2411 | |
2412 | if (args[i]) |
2413 | a->expr = gfc_copy_expr (args[i]->expr); |
2414 | else |
2415 | a->expr = gfc_copy_expr (b->expr); |
2416 | |
2417 | b = b->next; |
2418 | } |
2419 | |
2420 | /* Simplify the function calls. If the simplification fails, the |
2421 | error will be flagged up down-stream or the library will deal |
2422 | with it. */ |
2423 | p = gfc_copy_expr (new_ctor->expr); |
2424 | |
2425 | if (!gfc_simplify_expr (p, init_flag)) |
2426 | gfc_free_expr (p); |
2427 | else |
2428 | gfc_replace_expr (new_ctor->expr, p); |
2429 | |
2430 | for (i = 0; i < n; i++) |
2431 | if (args[i]) |
2432 | args[i] = gfc_constructor_next (args[i]); |
2433 | |
2434 | for (i = 1; i < n; i++) |
2435 | if (rank[i] && ((args[i] != NULL__null && args[array_arg - 1] == NULL__null) |
2436 | || (args[i] == NULL__null && args[array_arg - 1] != NULL__null))) |
2437 | goto compliance; |
2438 | } |
2439 | |
2440 | free_expr0 (e); |
2441 | *e = *expr; |
2442 | /* Free "expr" but not the pointers it contains. */ |
2443 | free (expr); |
2444 | gfc_free_expr (old); |
2445 | return true; |
2446 | |
2447 | compliance: |
2448 | gfc_error_now ("elemental function arguments at %C are not compliant"); |
2449 | |
2450 | cleanup: |
2451 | gfc_free_expr (expr); |
2452 | gfc_free_expr (old); |
2453 | return false; |
2454 | } |
2455 | |
2456 | |
2457 | static bool |
2458 | check_intrinsic_op (gfc_expr *e, bool (*check_function) (gfc_expr *)) |
2459 | { |
2460 | gfc_expr *op1 = e->value.op.op1; |
2461 | gfc_expr *op2 = e->value.op.op2; |
2462 | |
2463 | if (!(*check_function)(op1)) |
2464 | return false; |
2465 | |
2466 | switch (e->value.op.op) |
2467 | { |
2468 | case INTRINSIC_UPLUS: |
2469 | case INTRINSIC_UMINUS: |
2470 | if (!numeric_type (et0 (op1))) |
2471 | goto not_numeric; |
2472 | break; |
2473 | |
2474 | case INTRINSIC_EQ: |
2475 | case INTRINSIC_EQ_OS: |
2476 | case INTRINSIC_NE: |
2477 | case INTRINSIC_NE_OS: |
2478 | case INTRINSIC_GT: |
2479 | case INTRINSIC_GT_OS: |
2480 | case INTRINSIC_GE: |
2481 | case INTRINSIC_GE_OS: |
2482 | case INTRINSIC_LT: |
2483 | case INTRINSIC_LT_OS: |
2484 | case INTRINSIC_LE: |
2485 | case INTRINSIC_LE_OS: |
2486 | if (!(*check_function)(op2)) |
2487 | return false; |
2488 | |
2489 | if (!(et0 (op1) == BT_CHARACTER && et0 (op2) == BT_CHARACTER) |
2490 | && !(numeric_type (et0 (op1)) && numeric_type (et0 (op2)))) |
2491 | { |
2492 | gfc_error ("Numeric or CHARACTER operands are required in " |
2493 | "expression at %L", &e->where); |
2494 | return false; |
2495 | } |
2496 | break; |
2497 | |
2498 | case INTRINSIC_PLUS: |
2499 | case INTRINSIC_MINUS: |
2500 | case INTRINSIC_TIMES: |
2501 | case INTRINSIC_DIVIDE: |
2502 | case INTRINSIC_POWER: |
2503 | if (!(*check_function)(op2)) |
2504 | return false; |
2505 | |
2506 | if (!numeric_type (et0 (op1)) || !numeric_type (et0 (op2))) |
2507 | goto not_numeric; |
2508 | |
2509 | break; |
2510 | |
2511 | case INTRINSIC_CONCAT: |
2512 | if (!(*check_function)(op2)) |
2513 | return false; |
2514 | |
2515 | if (et0 (op1) != BT_CHARACTER || et0 (op2) != BT_CHARACTER) |
2516 | { |
2517 | gfc_error ("Concatenation operator in expression at %L " |
2518 | "must have two CHARACTER operands", &op1->where); |
2519 | return false; |
2520 | } |
2521 | |
2522 | if (op1->ts.kind != op2->ts.kind) |
2523 | { |
2524 | gfc_error ("Concat operator at %L must concatenate strings of the " |
2525 | "same kind", &e->where); |
2526 | return false; |
2527 | } |
2528 | |
2529 | break; |
2530 | |
2531 | case INTRINSIC_NOT: |
2532 | if (et0 (op1) != BT_LOGICAL) |
2533 | { |
2534 | gfc_error (".NOT. operator in expression at %L must have a LOGICAL " |
2535 | "operand", &op1->where); |
2536 | return false; |
2537 | } |
2538 | |
2539 | break; |
2540 | |
2541 | case INTRINSIC_AND: |
2542 | case INTRINSIC_OR: |
2543 | case INTRINSIC_EQV: |
2544 | case INTRINSIC_NEQV: |
2545 | if (!(*check_function)(op2)) |
2546 | return false; |
2547 | |
2548 | if (et0 (op1) != BT_LOGICAL || et0 (op2) != BT_LOGICAL) |
2549 | { |
2550 | gfc_error ("LOGICAL operands are required in expression at %L", |
2551 | &e->where); |
2552 | return false; |
2553 | } |
2554 | |
2555 | break; |
2556 | |
2557 | case INTRINSIC_PARENTHESES: |
2558 | break; |
2559 | |
2560 | default: |
2561 | gfc_error ("Only intrinsic operators can be used in expression at %L", |
2562 | &e->where); |
2563 | return false; |
2564 | } |
2565 | |
2566 | return true; |
2567 | |
2568 | not_numeric: |
2569 | gfc_error ("Numeric operands are required in expression at %L", &e->where); |
2570 | |
2571 | return false; |
2572 | } |
2573 | |
2574 | /* F2003, 7.1.7 (3): In init expression, allocatable components |
2575 | must not be data-initialized. */ |
2576 | static bool |
2577 | check_alloc_comp_init (gfc_expr *e) |
2578 | { |
2579 | gfc_component *comp; |
2580 | gfc_constructor *ctor; |
2581 | |
2582 | gcc_assert (e->expr_type == EXPR_STRUCTURE)((void)(!(e->expr_type == EXPR_STRUCTURE) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 2582, __FUNCTION__), 0 : 0)); |
2583 | gcc_assert (e->ts.type == BT_DERIVED || e->ts.type == BT_CLASS)((void)(!(e->ts.type == BT_DERIVED || e->ts.type == BT_CLASS ) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 2583, __FUNCTION__), 0 : 0)); |
2584 | |
2585 | for (comp = e->ts.u.derived->components, |
2586 | ctor = gfc_constructor_first (e->value.constructor); |
2587 | comp; comp = comp->next, ctor = gfc_constructor_next (ctor)) |
2588 | { |
2589 | if (comp->attr.allocatable && ctor->expr |
2590 | && ctor->expr->expr_type != EXPR_NULL) |
2591 | { |
2592 | gfc_error ("Invalid initialization expression for ALLOCATABLE " |
2593 | "component %qs in structure constructor at %L", |
2594 | comp->name, &ctor->expr->where); |
2595 | return false; |
2596 | } |
2597 | } |
2598 | |
2599 | return true; |
2600 | } |
2601 | |
2602 | static match |
2603 | check_init_expr_arguments (gfc_expr *e) |
2604 | { |
2605 | gfc_actual_arglist *ap; |
2606 | |
2607 | for (ap = e->value.function.actual; ap; ap = ap->next) |
2608 | if (!gfc_check_init_expr (ap->expr)) |
2609 | return MATCH_ERROR; |
2610 | |
2611 | return MATCH_YES; |
2612 | } |
2613 | |
2614 | static bool check_restricted (gfc_expr *); |
2615 | |
2616 | /* F95, 7.1.6.1, Initialization expressions, (7) |
2617 | F2003, 7.1.7 Initialization expression, (8) |
2618 | F2008, 7.1.12 Constant expression, (4) */ |
2619 | |
2620 | static match |
2621 | check_inquiry (gfc_expr *e, int not_restricted) |
2622 | { |
2623 | const char *name; |
2624 | const char *const *functions; |
2625 | |
2626 | static const char *const inquiry_func_f95[] = { |
2627 | "lbound", "shape", "size", "ubound", |
2628 | "bit_size", "len", "kind", |
2629 | "digits", "epsilon", "huge", "maxexponent", "minexponent", |
2630 | "precision", "radix", "range", "tiny", |
2631 | NULL__null |
2632 | }; |
2633 | |
2634 | static const char *const inquiry_func_f2003[] = { |
2635 | "lbound", "shape", "size", "ubound", |
2636 | "bit_size", "len", "kind", |
2637 | "digits", "epsilon", "huge", "maxexponent", "minexponent", |
2638 | "precision", "radix", "range", "tiny", |
2639 | "new_line", NULL__null |
2640 | }; |
2641 | |
2642 | /* std=f2008+ or -std=gnu */ |
2643 | static const char *const inquiry_func_gnu[] = { |
2644 | "lbound", "shape", "size", "ubound", |
2645 | "bit_size", "len", "kind", |
2646 | "digits", "epsilon", "huge", "maxexponent", "minexponent", |
2647 | "precision", "radix", "range", "tiny", |
2648 | "new_line", "storage_size", NULL__null |
2649 | }; |
2650 | |
2651 | int i = 0; |
2652 | gfc_actual_arglist *ap; |
2653 | gfc_symbol *sym; |
2654 | gfc_symbol *asym; |
2655 | |
2656 | if (!e->value.function.isym |
2657 | || !e->value.function.isym->inquiry) |
2658 | return MATCH_NO; |
2659 | |
2660 | /* An undeclared parameter will get us here (PR25018). */ |
2661 | if (e->symtree == NULL__null) |
2662 | return MATCH_NO; |
2663 | |
2664 | sym = e->symtree->n.sym; |
2665 | |
2666 | if (sym->from_intmod) |
2667 | { |
2668 | if (sym->from_intmod == INTMOD_ISO_FORTRAN_ENV |
2669 | && sym->intmod_sym_id != ISOFORTRAN_COMPILER_OPTIONS |
2670 | && sym->intmod_sym_id != ISOFORTRAN_COMPILER_VERSION) |
2671 | return MATCH_NO; |
2672 | |
2673 | if (sym->from_intmod == INTMOD_ISO_C_BINDING |
2674 | && sym->intmod_sym_id != ISOCBINDING_C_SIZEOF) |
2675 | return MATCH_NO; |
2676 | } |
2677 | else |
2678 | { |
2679 | name = sym->name; |
2680 | |
2681 | functions = inquiry_func_gnu; |
2682 | if (gfc_option.warn_std & GFC_STD_F2003(1<<4)) |
2683 | functions = inquiry_func_f2003; |
2684 | if (gfc_option.warn_std & GFC_STD_F95(1<<3)) |
2685 | functions = inquiry_func_f95; |
2686 | |
2687 | for (i = 0; functions[i]; i++) |
2688 | if (strcmp (functions[i], name) == 0) |
2689 | break; |
2690 | |
2691 | if (functions[i] == NULL__null) |
2692 | return MATCH_ERROR; |
2693 | } |
2694 | |
2695 | /* At this point we have an inquiry function with a variable argument. The |
2696 | type of the variable might be undefined, but we need it now, because the |
2697 | arguments of these functions are not allowed to be undefined. */ |
2698 | |
2699 | for (ap = e->value.function.actual; ap; ap = ap->next) |
2700 | { |
2701 | if (!ap->expr) |
2702 | continue; |
2703 | |
2704 | asym = ap->expr->symtree ? ap->expr->symtree->n.sym : NULL__null; |
2705 | |
2706 | if (ap->expr->ts.type == BT_UNKNOWN) |
2707 | { |
2708 | if (asym && asym->ts.type == BT_UNKNOWN |
2709 | && !gfc_set_default_type (asym, 0, gfc_current_ns)) |
2710 | return MATCH_NO; |
2711 | |
2712 | ap->expr->ts = asym->ts; |
2713 | } |
2714 | |
2715 | if (asym && asym->assoc && asym->assoc->target |
2716 | && asym->assoc->target->expr_type == EXPR_CONSTANT) |
2717 | { |
2718 | gfc_free_expr (ap->expr); |
2719 | ap->expr = gfc_copy_expr (asym->assoc->target); |
2720 | } |
2721 | |
2722 | /* Assumed character length will not reduce to a constant expression |
2723 | with LEN, as required by the standard. */ |
2724 | if (i == 5 && not_restricted && asym |
2725 | && asym->ts.type == BT_CHARACTER |
2726 | && ((asym->ts.u.cl && asym->ts.u.cl->length == NULL__null) |
2727 | || asym->ts.deferred)) |
2728 | { |
2729 | gfc_error ("Assumed or deferred character length variable %qs " |
2730 | "in constant expression at %L", |
2731 | asym->name, &ap->expr->where); |
2732 | return MATCH_ERROR; |
2733 | } |
2734 | else if (not_restricted && !gfc_check_init_expr (ap->expr)) |
2735 | return MATCH_ERROR; |
2736 | |
2737 | if (not_restricted == 0 |
2738 | && ap->expr->expr_type != EXPR_VARIABLE |
2739 | && !check_restricted (ap->expr)) |
2740 | return MATCH_ERROR; |
2741 | |
2742 | if (not_restricted == 0 |
2743 | && ap->expr->expr_type == EXPR_VARIABLE |
2744 | && asym->attr.dummy && asym->attr.optional) |
2745 | return MATCH_NO; |
2746 | } |
2747 | |
2748 | return MATCH_YES; |
2749 | } |
2750 | |
2751 | |
2752 | /* F95, 7.1.6.1, Initialization expressions, (5) |
2753 | F2003, 7.1.7 Initialization expression, (5) */ |
2754 | |
2755 | static match |
2756 | check_transformational (gfc_expr *e) |
2757 | { |
2758 | static const char * const trans_func_f95[] = { |
2759 | "repeat", "reshape", "selected_int_kind", |
2760 | "selected_real_kind", "transfer", "trim", NULL__null |
2761 | }; |
2762 | |
2763 | static const char * const trans_func_f2003[] = { |
2764 | "all", "any", "count", "dot_product", "matmul", "null", "pack", |
2765 | "product", "repeat", "reshape", "selected_char_kind", "selected_int_kind", |
2766 | "selected_real_kind", "spread", "sum", "transfer", "transpose", |
2767 | "trim", "unpack", NULL__null |
2768 | }; |
2769 | |
2770 | static const char * const trans_func_f2008[] = { |
2771 | "all", "any", "count", "dot_product", "matmul", "null", "pack", |
2772 | "product", "repeat", "reshape", "selected_char_kind", "selected_int_kind", |
2773 | "selected_real_kind", "spread", "sum", "transfer", "transpose", |
2774 | "trim", "unpack", "findloc", NULL__null |
2775 | }; |
2776 | |
2777 | int i; |
2778 | const char *name; |
2779 | const char *const *functions; |
2780 | |
2781 | if (!e->value.function.isym |
2782 | || !e->value.function.isym->transformational) |
2783 | return MATCH_NO; |
2784 | |
2785 | name = e->symtree->n.sym->name; |
2786 | |
2787 | if (gfc_option.allow_std & GFC_STD_F2008(1<<7)) |
2788 | functions = trans_func_f2008; |
2789 | else if (gfc_option.allow_std & GFC_STD_F2003(1<<4)) |
2790 | functions = trans_func_f2003; |
2791 | else |
2792 | functions = trans_func_f95; |
2793 | |
2794 | /* NULL() is dealt with below. */ |
2795 | if (strcmp ("null", name) == 0) |
2796 | return MATCH_NO; |
2797 | |
2798 | for (i = 0; functions[i]; i++) |
2799 | if (strcmp (functions[i], name) == 0) |
2800 | break; |
2801 | |
2802 | if (functions[i] == NULL__null) |
2803 | { |
2804 | gfc_error ("transformational intrinsic %qs at %L is not permitted " |
2805 | "in an initialization expression", name, &e->where); |
2806 | return MATCH_ERROR; |
2807 | } |
2808 | |
2809 | return check_init_expr_arguments (e); |
2810 | } |
2811 | |
2812 | |
2813 | /* F95, 7.1.6.1, Initialization expressions, (6) |
2814 | F2003, 7.1.7 Initialization expression, (6) */ |
2815 | |
2816 | static match |
2817 | check_null (gfc_expr *e) |
2818 | { |
2819 | if (strcmp ("null", e->symtree->n.sym->name) != 0) |
2820 | return MATCH_NO; |
2821 | |
2822 | return check_init_expr_arguments (e); |
2823 | } |
2824 | |
2825 | |
2826 | static match |
2827 | check_elemental (gfc_expr *e) |
2828 | { |
2829 | if (!e->value.function.isym |
2830 | || !e->value.function.isym->elemental) |
2831 | return MATCH_NO; |
2832 | |
2833 | if (e->ts.type != BT_INTEGER |
2834 | && e->ts.type != BT_CHARACTER |
2835 | && !gfc_notify_std (GFC_STD_F2003(1<<4), "Evaluation of nonstandard " |
2836 | "initialization expression at %L", &e->where)) |
2837 | return MATCH_ERROR; |
2838 | |
2839 | return check_init_expr_arguments (e); |
2840 | } |
2841 | |
2842 | |
2843 | static match |
2844 | check_conversion (gfc_expr *e) |
2845 | { |
2846 | if (!e->value.function.isym |
2847 | || !e->value.function.isym->conversion) |
2848 | return MATCH_NO; |
2849 | |
2850 | return check_init_expr_arguments (e); |
2851 | } |
2852 | |
2853 | |
2854 | /* Verify that an expression is an initialization expression. A side |
2855 | effect is that the expression tree is reduced to a single constant |
2856 | node if all goes well. This would normally happen when the |
2857 | expression is constructed but function references are assumed to be |
2858 | intrinsics in the context of initialization expressions. If |
2859 | false is returned an error message has been generated. */ |
2860 | |
2861 | bool |
2862 | gfc_check_init_expr (gfc_expr *e) |
2863 | { |
2864 | match m; |
2865 | bool t; |
2866 | |
2867 | if (e == NULL__null) |
2868 | return true; |
2869 | |
2870 | switch (e->expr_type) |
2871 | { |
2872 | case EXPR_OP: |
2873 | t = check_intrinsic_op (e, gfc_check_init_expr); |
2874 | if (t) |
2875 | t = gfc_simplify_expr (e, 0); |
2876 | |
2877 | break; |
2878 | |
2879 | case EXPR_FUNCTION: |
2880 | t = false; |
2881 | |
2882 | { |
2883 | bool conversion; |
2884 | gfc_intrinsic_sym* isym = NULL__null; |
2885 | gfc_symbol* sym = e->symtree->n.sym; |
2886 | |
2887 | /* Simplify here the intrinsics from the IEEE_ARITHMETIC and |
2888 | IEEE_EXCEPTIONS modules. */ |
2889 | int mod = sym->from_intmod; |
2890 | if (mod == INTMOD_NONE && sym->generic) |
2891 | mod = sym->generic->sym->from_intmod; |
2892 | if (mod == INTMOD_IEEE_ARITHMETIC || mod == INTMOD_IEEE_EXCEPTIONS) |
2893 | { |
2894 | gfc_expr *new_expr = gfc_simplify_ieee_functions (e); |
2895 | if (new_expr) |
2896 | { |
2897 | gfc_replace_expr (e, new_expr); |
2898 | t = true; |
2899 | break; |
2900 | } |
2901 | } |
2902 | |
2903 | /* If a conversion function, e.g., __convert_i8_i4, was inserted |
2904 | into an array constructor, we need to skip the error check here. |
2905 | Conversion errors are caught below in scalarize_intrinsic_call. */ |
2906 | conversion = e->value.function.isym |
2907 | && (e->value.function.isym->conversion == 1); |
2908 | |
2909 | if (!conversion && (!gfc_is_intrinsic (sym, 0, e->where) |
2910 | || (m = gfc_intrinsic_func_interface (e, 0)) == MATCH_NO)) |
Although the value stored to 'm' is used in the enclosing expression, the value is never actually read from 'm' | |
2911 | { |
2912 | gfc_error ("Function %qs in initialization expression at %L " |
2913 | "must be an intrinsic function", |
2914 | e->symtree->n.sym->name, &e->where); |
2915 | break; |
2916 | } |
2917 | |
2918 | if ((m = check_conversion (e)) == MATCH_NO |
2919 | && (m = check_inquiry (e, 1)) == MATCH_NO |
2920 | && (m = check_null (e)) == MATCH_NO |
2921 | && (m = check_transformational (e)) == MATCH_NO |
2922 | && (m = check_elemental (e)) == MATCH_NO) |
2923 | { |
2924 | gfc_error ("Intrinsic function %qs at %L is not permitted " |
2925 | "in an initialization expression", |
2926 | e->symtree->n.sym->name, &e->where); |
2927 | m = MATCH_ERROR; |
2928 | } |
2929 | |
2930 | if (m == MATCH_ERROR) |
2931 | return false; |
2932 | |
2933 | /* Try to scalarize an elemental intrinsic function that has an |
2934 | array argument. */ |
2935 | isym = gfc_find_function (e->symtree->n.sym->name); |
2936 | if (isym && isym->elemental |
2937 | && (t = scalarize_intrinsic_call (e, true))) |
2938 | break; |
2939 | } |
2940 | |
2941 | if (m == MATCH_YES) |
2942 | t = gfc_simplify_expr (e, 0); |
2943 | |
2944 | break; |
2945 | |
2946 | case EXPR_VARIABLE: |
2947 | t = true; |
2948 | |
2949 | /* This occurs when parsing pdt templates. */ |
2950 | if (gfc_expr_attr (e).pdt_kind) |
2951 | break; |
2952 | |
2953 | if (gfc_check_iter_variable (e)) |
2954 | break; |
2955 | |
2956 | if (e->symtree->n.sym->attr.flavor == FL_PARAMETER) |
2957 | { |
2958 | /* A PARAMETER shall not be used to define itself, i.e. |
2959 | REAL, PARAMETER :: x = transfer(0, x) |
2960 | is invalid. */ |
2961 | if (!e->symtree->n.sym->value) |
2962 | { |
2963 | gfc_error ("PARAMETER %qs is used at %L before its definition " |
2964 | "is complete", e->symtree->n.sym->name, &e->where); |
2965 | t = false; |
2966 | } |
2967 | else |
2968 | t = simplify_parameter_variable (e, 0); |
2969 | |
2970 | break; |
2971 | } |
2972 | |
2973 | if (gfc_in_match_data ()) |
2974 | break; |
2975 | |
2976 | t = false; |
2977 | |
2978 | if (e->symtree->n.sym->as) |
2979 | { |
2980 | switch (e->symtree->n.sym->as->type) |
2981 | { |
2982 | case AS_ASSUMED_SIZE: |
2983 | gfc_error ("Assumed size array %qs at %L is not permitted " |
2984 | "in an initialization expression", |
2985 | e->symtree->n.sym->name, &e->where); |
2986 | break; |
2987 | |
2988 | case AS_ASSUMED_SHAPE: |
2989 | gfc_error ("Assumed shape array %qs at %L is not permitted " |
2990 | "in an initialization expression", |
2991 | e->symtree->n.sym->name, &e->where); |
2992 | break; |
2993 | |
2994 | case AS_DEFERRED: |
2995 | if (!e->symtree->n.sym->attr.allocatable |
2996 | && !e->symtree->n.sym->attr.pointer |
2997 | && e->symtree->n.sym->attr.dummy) |
2998 | gfc_error ("Assumed-shape array %qs at %L is not permitted " |
2999 | "in an initialization expression", |
3000 | e->symtree->n.sym->name, &e->where); |
3001 | else |
3002 | gfc_error ("Deferred array %qs at %L is not permitted " |
3003 | "in an initialization expression", |
3004 | e->symtree->n.sym->name, &e->where); |
3005 | break; |
3006 | |
3007 | case AS_EXPLICIT: |
3008 | gfc_error ("Array %qs at %L is a variable, which does " |
3009 | "not reduce to a constant expression", |
3010 | e->symtree->n.sym->name, &e->where); |
3011 | break; |
3012 | |
3013 | case AS_ASSUMED_RANK: |
3014 | gfc_error ("Assumed-rank array %qs at %L is not permitted " |
3015 | "in an initialization expression", |
3016 | e->symtree->n.sym->name, &e->where); |
3017 | break; |
3018 | |
3019 | default: |
3020 | gcc_unreachable()(fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 3020, __FUNCTION__)); |
3021 | } |
3022 | } |
3023 | else |
3024 | gfc_error ("Parameter %qs at %L has not been declared or is " |
3025 | "a variable, which does not reduce to a constant " |
3026 | "expression", e->symtree->name, &e->where); |
3027 | |
3028 | break; |
3029 | |
3030 | case EXPR_CONSTANT: |
3031 | case EXPR_NULL: |
3032 | t = true; |
3033 | break; |
3034 | |
3035 | case EXPR_SUBSTRING: |
3036 | if (e->ref) |
3037 | { |
3038 | t = gfc_check_init_expr (e->ref->u.ss.start); |
3039 | if (!t) |
3040 | break; |
3041 | |
3042 | t = gfc_check_init_expr (e->ref->u.ss.end); |
3043 | if (t) |
3044 | t = gfc_simplify_expr (e, 0); |
3045 | } |
3046 | else |
3047 | t = false; |
3048 | break; |
3049 | |
3050 | case EXPR_STRUCTURE: |
3051 | t = e->ts.is_iso_c ? true : false; |
3052 | if (t) |
3053 | break; |
3054 | |
3055 | t = check_alloc_comp_init (e); |
3056 | if (!t) |
3057 | break; |
3058 | |
3059 | t = gfc_check_constructor (e, gfc_check_init_expr); |
3060 | if (!t) |
3061 | break; |
3062 | |
3063 | break; |
3064 | |
3065 | case EXPR_ARRAY: |
3066 | t = gfc_check_constructor (e, gfc_check_init_expr); |
3067 | if (!t) |
3068 | break; |
3069 | |
3070 | t = gfc_expand_constructor (e, true); |
3071 | if (!t) |
3072 | break; |
3073 | |
3074 | t = gfc_check_constructor_type (e); |
3075 | break; |
3076 | |
3077 | default: |
3078 | gfc_internal_error ("check_init_expr(): Unknown expression type"); |
3079 | } |
3080 | |
3081 | return t; |
3082 | } |
3083 | |
3084 | /* Reduces a general expression to an initialization expression (a constant). |
3085 | This used to be part of gfc_match_init_expr. |
3086 | Note that this function doesn't free the given expression on false. */ |
3087 | |
3088 | bool |
3089 | gfc_reduce_init_expr (gfc_expr *expr) |
3090 | { |
3091 | bool t; |
3092 | |
3093 | gfc_init_expr_flag = true; |
3094 | t = gfc_resolve_expr (expr); |
3095 | if (t) |
3096 | t = gfc_check_init_expr (expr); |
3097 | gfc_init_expr_flag = false; |
3098 | |
3099 | if (!t || !expr) |
3100 | return false; |
3101 | |
3102 | if (expr->expr_type == EXPR_ARRAY) |
3103 | { |
3104 | if (!gfc_check_constructor_type (expr)) |
3105 | return false; |
3106 | if (!gfc_expand_constructor (expr, true)) |
3107 | return false; |
3108 | } |
3109 | |
3110 | return true; |
3111 | } |
3112 | |
3113 | |
3114 | /* Match an initialization expression. We work by first matching an |
3115 | expression, then reducing it to a constant. */ |
3116 | |
3117 | match |
3118 | gfc_match_init_expr (gfc_expr **result) |
3119 | { |
3120 | gfc_expr *expr; |
3121 | match m; |
3122 | bool t; |
3123 | |
3124 | expr = NULL__null; |
3125 | |
3126 | gfc_init_expr_flag = true; |
3127 | |
3128 | m = gfc_match_expr (&expr); |
3129 | if (m != MATCH_YES) |
3130 | { |
3131 | gfc_init_expr_flag = false; |
3132 | return m; |
3133 | } |
3134 | |
3135 | if (gfc_derived_parameter_expr (expr)) |
3136 | { |
3137 | *result = expr; |
3138 | gfc_init_expr_flag = false; |
3139 | return m; |
3140 | } |
3141 | |
3142 | t = gfc_reduce_init_expr (expr); |
3143 | if (!t) |
3144 | { |
3145 | gfc_free_expr (expr); |
3146 | gfc_init_expr_flag = false; |
3147 | return MATCH_ERROR; |
3148 | } |
3149 | |
3150 | *result = expr; |
3151 | gfc_init_expr_flag = false; |
3152 | |
3153 | return MATCH_YES; |
3154 | } |
3155 | |
3156 | |
3157 | /* Given an actual argument list, test to see that each argument is a |
3158 | restricted expression and optionally if the expression type is |
3159 | integer or character. */ |
3160 | |
3161 | static bool |
3162 | restricted_args (gfc_actual_arglist *a) |
3163 | { |
3164 | for (; a; a = a->next) |
3165 | { |
3166 | if (!check_restricted (a->expr)) |
3167 | return false; |
3168 | } |
3169 | |
3170 | return true; |
3171 | } |
3172 | |
3173 | |
3174 | /************* Restricted/specification expressions *************/ |
3175 | |
3176 | |
3177 | /* Make sure a non-intrinsic function is a specification function, |
3178 | * see F08:7.1.11.5. */ |
3179 | |
3180 | static bool |
3181 | external_spec_function (gfc_expr *e) |
3182 | { |
3183 | gfc_symbol *f; |
3184 | |
3185 | f = e->value.function.esym; |
3186 | |
3187 | /* IEEE functions allowed are "a reference to a transformational function |
3188 | from the intrinsic module IEEE_ARITHMETIC or IEEE_EXCEPTIONS", and |
3189 | "inquiry function from the intrinsic modules IEEE_ARITHMETIC and |
3190 | IEEE_EXCEPTIONS". */ |
3191 | if (f->from_intmod == INTMOD_IEEE_ARITHMETIC |
3192 | || f->from_intmod == INTMOD_IEEE_EXCEPTIONS) |
3193 | { |
3194 | if (!strcmp (f->name, "ieee_selected_real_kind") |
3195 | || !strcmp (f->name, "ieee_support_rounding") |
3196 | || !strcmp (f->name, "ieee_support_flag") |
3197 | || !strcmp (f->name, "ieee_support_halting") |
3198 | || !strcmp (f->name, "ieee_support_datatype") |
3199 | || !strcmp (f->name, "ieee_support_denormal") |
3200 | || !strcmp (f->name, "ieee_support_subnormal") |
3201 | || !strcmp (f->name, "ieee_support_divide") |
3202 | || !strcmp (f->name, "ieee_support_inf") |
3203 | || !strcmp (f->name, "ieee_support_io") |
3204 | || !strcmp (f->name, "ieee_support_nan") |
3205 | || !strcmp (f->name, "ieee_support_sqrt") |
3206 | || !strcmp (f->name, "ieee_support_standard") |
3207 | || !strcmp (f->name, "ieee_support_underflow_control")) |
3208 | goto function_allowed; |
3209 | } |
3210 | |
3211 | if (f->attr.proc == PROC_ST_FUNCTION) |
3212 | { |
3213 | gfc_error ("Specification function %qs at %L cannot be a statement " |
3214 | "function", f->name, &e->where); |
3215 | return false; |
3216 | } |
3217 | |
3218 | if (f->attr.proc == PROC_INTERNAL) |
3219 | { |
3220 | gfc_error ("Specification function %qs at %L cannot be an internal " |
3221 | "function", f->name, &e->where); |
3222 | return false; |
3223 | } |
3224 | |
3225 | if (!f->attr.pure && !f->attr.elemental) |
3226 | { |
3227 | gfc_error ("Specification function %qs at %L must be PURE", f->name, |
3228 | &e->where); |
3229 | return false; |
3230 | } |
3231 | |
3232 | /* F08:7.1.11.6. */ |
3233 | if (f->attr.recursive |
3234 | && !gfc_notify_std (GFC_STD_F2003(1<<4), |
3235 | "Specification function %qs " |
3236 | "at %L cannot be RECURSIVE", f->name, &e->where)) |
3237 | return false; |
3238 | |
3239 | function_allowed: |
3240 | return restricted_args (e->value.function.actual); |
3241 | } |
3242 | |
3243 | |
3244 | /* Check to see that a function reference to an intrinsic is a |
3245 | restricted expression. */ |
3246 | |
3247 | static bool |
3248 | restricted_intrinsic (gfc_expr *e) |
3249 | { |
3250 | /* TODO: Check constraints on inquiry functions. 7.1.6.2 (7). */ |
3251 | if (check_inquiry (e, 0) == MATCH_YES) |
3252 | return true; |
3253 | |
3254 | return restricted_args (e->value.function.actual); |
3255 | } |
3256 | |
3257 | |
3258 | /* Check the expressions of an actual arglist. Used by check_restricted. */ |
3259 | |
3260 | static bool |
3261 | check_arglist (gfc_actual_arglist* arg, bool (*checker) (gfc_expr*)) |
3262 | { |
3263 | for (; arg; arg = arg->next) |
3264 | if (!checker (arg->expr)) |
3265 | return false; |
3266 | |
3267 | return true; |
3268 | } |
3269 | |
3270 | |
3271 | /* Check the subscription expressions of a reference chain with a checking |
3272 | function; used by check_restricted. */ |
3273 | |
3274 | static bool |
3275 | check_references (gfc_ref* ref, bool (*checker) (gfc_expr*)) |
3276 | { |
3277 | int dim; |
3278 | |
3279 | if (!ref) |
3280 | return true; |
3281 | |
3282 | switch (ref->type) |
3283 | { |
3284 | case REF_ARRAY: |
3285 | for (dim = 0; dim < ref->u.ar.dimen; ++dim) |
3286 | { |
3287 | if (!checker (ref->u.ar.start[dim])) |
3288 | return false; |
3289 | if (!checker (ref->u.ar.end[dim])) |
3290 | return false; |
3291 | if (!checker (ref->u.ar.stride[dim])) |
3292 | return false; |
3293 | } |
3294 | break; |
3295 | |
3296 | case REF_COMPONENT: |
3297 | /* Nothing needed, just proceed to next reference. */ |
3298 | break; |
3299 | |
3300 | case REF_SUBSTRING: |
3301 | if (!checker (ref->u.ss.start)) |
3302 | return false; |
3303 | if (!checker (ref->u.ss.end)) |
3304 | return false; |
3305 | break; |
3306 | |
3307 | default: |
3308 | gcc_unreachable ()(fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 3308, __FUNCTION__)); |
3309 | break; |
3310 | } |
3311 | |
3312 | return check_references (ref->next, checker); |
3313 | } |
3314 | |
3315 | /* Return true if ns is a parent of the current ns. */ |
3316 | |
3317 | static bool |
3318 | is_parent_of_current_ns (gfc_namespace *ns) |
3319 | { |
3320 | gfc_namespace *p; |
3321 | for (p = gfc_current_ns->parent; p; p = p->parent) |
3322 | if (ns == p) |
3323 | return true; |
3324 | |
3325 | return false; |
3326 | } |
3327 | |
3328 | /* Verify that an expression is a restricted expression. Like its |
3329 | cousin check_init_expr(), an error message is generated if we |
3330 | return false. */ |
3331 | |
3332 | static bool |
3333 | check_restricted (gfc_expr *e) |
3334 | { |
3335 | gfc_symbol* sym; |
3336 | bool t; |
3337 | |
3338 | if (e == NULL__null) |
3339 | return true; |
3340 | |
3341 | switch (e->expr_type) |
3342 | { |
3343 | case EXPR_OP: |
3344 | t = check_intrinsic_op (e, check_restricted); |
3345 | if (t) |
3346 | t = gfc_simplify_expr (e, 0); |
3347 | |
3348 | break; |
3349 | |
3350 | case EXPR_FUNCTION: |
3351 | if (e->value.function.esym) |
3352 | { |
3353 | t = check_arglist (e->value.function.actual, &check_restricted); |
3354 | if (t) |
3355 | t = external_spec_function (e); |
3356 | } |
3357 | else |
3358 | { |
3359 | if (e->value.function.isym && e->value.function.isym->inquiry) |
3360 | t = true; |
3361 | else |
3362 | t = check_arglist (e->value.function.actual, &check_restricted); |
3363 | |
3364 | if (t) |
3365 | t = restricted_intrinsic (e); |
3366 | } |
3367 | break; |
3368 | |
3369 | case EXPR_VARIABLE: |
3370 | sym = e->symtree->n.sym; |
3371 | t = false; |
3372 | |
3373 | /* If a dummy argument appears in a context that is valid for a |
3374 | restricted expression in an elemental procedure, it will have |
3375 | already been simplified away once we get here. Therefore we |
3376 | don't need to jump through hoops to distinguish valid from |
3377 | invalid cases. Allowed in F2008 and F2018. */ |
3378 | if (gfc_notification_std (GFC_STD_F2008(1<<7)) |
3379 | && sym->attr.dummy && sym->ns == gfc_current_ns |
3380 | && sym->ns->proc_name && sym->ns->proc_name->attr.elemental) |
3381 | { |
3382 | gfc_error_now ("Dummy argument %qs not " |
3383 | "allowed in expression at %L", |
3384 | sym->name, &e->where); |
3385 | break; |
3386 | } |
3387 | |
3388 | if (sym->attr.optional) |
3389 | { |
3390 | gfc_error ("Dummy argument %qs at %L cannot be OPTIONAL", |
3391 | sym->name, &e->where); |
3392 | break; |
3393 | } |
3394 | |
3395 | if (sym->attr.intent == INTENT_OUT) |
3396 | { |
3397 | gfc_error ("Dummy argument %qs at %L cannot be INTENT(OUT)", |
3398 | sym->name, &e->where); |
3399 | break; |
3400 | } |
3401 | |
3402 | /* Check reference chain if any. */ |
3403 | if (!check_references (e->ref, &check_restricted)) |
3404 | break; |
3405 | |
3406 | /* gfc_is_formal_arg broadcasts that a formal argument list is being |
3407 | processed in resolve.c(resolve_formal_arglist). This is done so |
3408 | that host associated dummy array indices are accepted (PR23446). |
3409 | This mechanism also does the same for the specification expressions |
3410 | of array-valued functions. */ |
3411 | if (e->error |
3412 | || sym->attr.in_common |
3413 | || sym->attr.use_assoc |
3414 | || sym->attr.dummy |
3415 | || sym->attr.implied_index |
3416 | || sym->attr.flavor == FL_PARAMETER |
3417 | || is_parent_of_current_ns (sym->ns) |
3418 | || (sym->ns->proc_name != NULL__null |
3419 | && sym->ns->proc_name->attr.flavor == FL_MODULE) |
3420 | || (gfc_is_formal_arg () && (sym->ns == gfc_current_ns))) |
3421 | { |
3422 | t = true; |
3423 | break; |
3424 | } |
3425 | |
3426 | gfc_error ("Variable %qs cannot appear in the expression at %L", |
3427 | sym->name, &e->where); |
3428 | /* Prevent a repetition of the error. */ |
3429 | e->error = 1; |
3430 | break; |
3431 | |
3432 | case EXPR_NULL: |
3433 | case EXPR_CONSTANT: |
3434 | t = true; |
3435 | break; |
3436 | |
3437 | case EXPR_SUBSTRING: |
3438 | t = gfc_specification_expr (e->ref->u.ss.start); |
3439 | if (!t) |
3440 | break; |
3441 | |
3442 | t = gfc_specification_expr (e->ref->u.ss.end); |
3443 | if (t) |
3444 | t = gfc_simplify_expr (e, 0); |
3445 | |
3446 | break; |
3447 | |
3448 | case EXPR_STRUCTURE: |
3449 | t = gfc_check_constructor (e, check_restricted); |
3450 | break; |
3451 | |
3452 | case EXPR_ARRAY: |
3453 | t = gfc_check_constructor (e, check_restricted); |
3454 | break; |
3455 | |
3456 | default: |
3457 | gfc_internal_error ("check_restricted(): Unknown expression type"); |
3458 | } |
3459 | |
3460 | return t; |
3461 | } |
3462 | |
3463 | |
3464 | /* Check to see that an expression is a specification expression. If |
3465 | we return false, an error has been generated. */ |
3466 | |
3467 | bool |
3468 | gfc_specification_expr (gfc_expr *e) |
3469 | { |
3470 | gfc_component *comp; |
3471 | |
3472 | if (e == NULL__null) |
3473 | return true; |
3474 | |
3475 | if (e->ts.type != BT_INTEGER) |
3476 | { |
3477 | gfc_error ("Expression at %L must be of INTEGER type, found %s", |
3478 | &e->where, gfc_basic_typename (e->ts.type)); |
3479 | return false; |
3480 | } |
3481 | |
3482 | comp = gfc_get_proc_ptr_comp (e); |
3483 | if (e->expr_type == EXPR_FUNCTION |
3484 | && !e->value.function.isym |
3485 | && !e->value.function.esym |
3486 | && !gfc_pure (e->symtree->n.sym) |
3487 | && (!comp || !comp->attr.pure)) |
3488 | { |
3489 | gfc_error ("Function %qs at %L must be PURE", |
3490 | e->symtree->n.sym->name, &e->where); |
3491 | /* Prevent repeat error messages. */ |
3492 | e->symtree->n.sym->attr.pure = 1; |
3493 | return false; |
3494 | } |
3495 | |
3496 | if (e->rank != 0) |
3497 | { |
3498 | gfc_error ("Expression at %L must be scalar", &e->where); |
3499 | return false; |
3500 | } |
3501 | |
3502 | if (!gfc_simplify_expr (e, 0)) |
3503 | return false; |
3504 | |
3505 | return check_restricted (e); |
3506 | } |
3507 | |
3508 | |
3509 | /************** Expression conformance checks. *************/ |
3510 | |
3511 | /* Given two expressions, make sure that the arrays are conformable. */ |
3512 | |
3513 | bool |
3514 | gfc_check_conformance (gfc_expr *op1, gfc_expr *op2, const char *optype_msgid, ...) |
3515 | { |
3516 | int op1_flag, op2_flag, d; |
3517 | mpz_t op1_size, op2_size; |
3518 | bool t; |
3519 | |
3520 | va_list argp; |
3521 | char buffer[240]; |
3522 | |
3523 | if (op1->rank == 0 || op2->rank == 0) |
3524 | return true; |
3525 | |
3526 | va_start (argp, optype_msgid)__builtin_va_start(argp, optype_msgid); |
3527 | d = vsnprintf (buffer, sizeof (buffer), optype_msgid, argp); |
3528 | va_end (argp)__builtin_va_end(argp); |
3529 | if (d < 1 || d >= (int) sizeof (buffer)) /* Reject truncation. */ |
3530 | gfc_internal_error ("optype_msgid overflow: %d", d); |
3531 | |
3532 | if (op1->rank != op2->rank) |
3533 | { |
3534 | gfc_error ("Incompatible ranks in %s (%d and %d) at %L", _(buffer)gettext (buffer), |
3535 | op1->rank, op2->rank, &op1->where); |
3536 | return false; |
3537 | } |
3538 | |
3539 | t = true; |
3540 | |
3541 | for (d = 0; d < op1->rank; d++) |
3542 | { |
3543 | op1_flag = gfc_array_dimen_size(op1, d, &op1_size); |
3544 | op2_flag = gfc_array_dimen_size(op2, d, &op2_size); |
3545 | |
3546 | if (op1_flag && op2_flag && mpz_cmp__gmpz_cmp (op1_size, op2_size) != 0) |
3547 | { |
3548 | gfc_error ("Different shape for %s at %L on dimension %d " |
3549 | "(%d and %d)", _(buffer)gettext (buffer), &op1->where, d + 1, |
3550 | (int) mpz_get_si__gmpz_get_si (op1_size), |
3551 | (int) mpz_get_si__gmpz_get_si (op2_size)); |
3552 | |
3553 | t = false; |
3554 | } |
3555 | |
3556 | if (op1_flag) |
3557 | mpz_clear__gmpz_clear (op1_size); |
3558 | if (op2_flag) |
3559 | mpz_clear__gmpz_clear (op2_size); |
3560 | |
3561 | if (!t) |
3562 | return false; |
3563 | } |
3564 | |
3565 | return true; |
3566 | } |
3567 | |
3568 | |
3569 | /* Given an assignable expression and an arbitrary expression, make |
3570 | sure that the assignment can take place. Only add a call to the intrinsic |
3571 | conversion routines, when allow_convert is set. When this assign is a |
3572 | coarray call, then the convert is done by the coarray routine implictly and |
3573 | adding the intrinsic conversion would do harm in most cases. */ |
3574 | |
3575 | bool |
3576 | gfc_check_assign (gfc_expr *lvalue, gfc_expr *rvalue, int conform, |
3577 | bool allow_convert) |
3578 | { |
3579 | gfc_symbol *sym; |
3580 | gfc_ref *ref; |
3581 | int has_pointer; |
3582 | |
3583 | sym = lvalue->symtree->n.sym; |
3584 | |
3585 | /* See if this is the component or subcomponent of a pointer and guard |
3586 | against assignment to LEN or KIND part-refs. */ |
3587 | has_pointer = sym->attr.pointer; |
3588 | for (ref = lvalue->ref; ref; ref = ref->next) |
3589 | { |
3590 | if (!has_pointer && ref->type == REF_COMPONENT |
3591 | && ref->u.c.component->attr.pointer) |
3592 | has_pointer = 1; |
3593 | else if (ref->type == REF_INQUIRY |
3594 | && (ref->u.i == INQUIRY_LEN || ref->u.i == INQUIRY_KIND)) |
3595 | { |
3596 | gfc_error ("Assignment to a LEN or KIND part_ref at %L is not " |
3597 | "allowed", &lvalue->where); |
3598 | return false; |
3599 | } |
3600 | } |
3601 | |
3602 | /* 12.5.2.2, Note 12.26: The result variable is very similar to any other |
3603 | variable local to a function subprogram. Its existence begins when |
3604 | execution of the function is initiated and ends when execution of the |
3605 | function is terminated... |
3606 | Therefore, the left hand side is no longer a variable, when it is: */ |
3607 | if (sym->attr.flavor == FL_PROCEDURE && sym->attr.proc != PROC_ST_FUNCTION |
3608 | && !sym->attr.external) |
3609 | { |
3610 | bool bad_proc; |
3611 | bad_proc = false; |
3612 | |
3613 | /* (i) Use associated; */ |
3614 | if (sym->attr.use_assoc) |
3615 | bad_proc = true; |
3616 | |
3617 | /* (ii) The assignment is in the main program; or */ |
3618 | if (gfc_current_ns->proc_name |
3619 | && gfc_current_ns->proc_name->attr.is_main_program) |
3620 | bad_proc = true; |
3621 | |
3622 | /* (iii) A module or internal procedure... */ |
3623 | if (gfc_current_ns->proc_name |
3624 | && (gfc_current_ns->proc_name->attr.proc == PROC_INTERNAL |
3625 | || gfc_current_ns->proc_name->attr.proc == PROC_MODULE) |
3626 | && gfc_current_ns->parent |
3627 | && (!(gfc_current_ns->parent->proc_name->attr.function |
3628 | || gfc_current_ns->parent->proc_name->attr.subroutine) |
3629 | || gfc_current_ns->parent->proc_name->attr.is_main_program)) |
3630 | { |
3631 | /* ... that is not a function... */ |
3632 | if (gfc_current_ns->proc_name |
3633 | && !gfc_current_ns->proc_name->attr.function) |
3634 | bad_proc = true; |
3635 | |
3636 | /* ... or is not an entry and has a different name. */ |
3637 | if (!sym->attr.entry && sym->name != gfc_current_ns->proc_name->name) |
3638 | bad_proc = true; |
3639 | } |
3640 | |
3641 | /* (iv) Host associated and not the function symbol or the |
3642 | parent result. This picks up sibling references, which |
3643 | cannot be entries. */ |
3644 | if (!sym->attr.entry |
3645 | && sym->ns == gfc_current_ns->parent |
3646 | && sym != gfc_current_ns->proc_name |
3647 | && sym != gfc_current_ns->parent->proc_name->result) |
3648 | bad_proc = true; |
3649 | |
3650 | if (bad_proc) |
3651 | { |
3652 | gfc_error ("%qs at %L is not a VALUE", sym->name, &lvalue->where); |
3653 | return false; |
3654 | } |
3655 | } |
3656 | else |
3657 | { |
3658 | /* Reject assigning to an external symbol. For initializers, this |
3659 | was already done before, in resolve_fl_procedure. */ |
3660 | if (sym->attr.flavor == FL_PROCEDURE && sym->attr.external |
3661 | && sym->attr.proc != PROC_MODULE && !rvalue->error) |
3662 | { |
3663 | gfc_error ("Illegal assignment to external procedure at %L", |
3664 | &lvalue->where); |
3665 | return false; |
3666 | } |
3667 | } |
3668 | |
3669 | if (rvalue->rank != 0 && lvalue->rank != rvalue->rank) |
3670 | { |
3671 | gfc_error ("Incompatible ranks %d and %d in assignment at %L", |
3672 | lvalue->rank, rvalue->rank, &lvalue->where); |
3673 | return false; |
3674 | } |
3675 | |
3676 | if (lvalue->ts.type == BT_UNKNOWN) |
3677 | { |
3678 | gfc_error ("Variable type is UNKNOWN in assignment at %L", |
3679 | &lvalue->where); |
3680 | return false; |
3681 | } |
3682 | |
3683 | if (rvalue->expr_type == EXPR_NULL) |
3684 | { |
3685 | if (has_pointer && (ref == NULL__null || ref->next == NULL__null) |
3686 | && lvalue->symtree->n.sym->attr.data) |
3687 | return true; |
3688 | else |
3689 | { |
3690 | gfc_error ("NULL appears on right-hand side in assignment at %L", |
3691 | &rvalue->where); |
3692 | return false; |
3693 | } |
3694 | } |
3695 | |
3696 | /* This is possibly a typo: x = f() instead of x => f(). */ |
3697 | if (warn_surprisingglobal_options.x_warn_surprising |
3698 | && rvalue->expr_type == EXPR_FUNCTION && gfc_expr_attr (rvalue).pointer) |
3699 | gfc_warning (OPT_Wsurprising, |
3700 | "POINTER-valued function appears on right-hand side of " |
3701 | "assignment at %L", &rvalue->where); |
3702 | |
3703 | /* Check size of array assignments. */ |
3704 | if (lvalue->rank != 0 && rvalue->rank != 0 |
3705 | && !gfc_check_conformance (lvalue, rvalue, _("array assignment")gettext ("array assignment"))) |
3706 | return false; |
3707 | |
3708 | /* Handle the case of a BOZ literal on the RHS. */ |
3709 | if (rvalue->ts.type == BT_BOZ) |
3710 | { |
3711 | if (lvalue->symtree->n.sym->attr.data) |
3712 | { |
3713 | if (lvalue->ts.type == BT_INTEGER |
3714 | && gfc_boz2int (rvalue, lvalue->ts.kind)) |
3715 | return true; |
3716 | |
3717 | if (lvalue->ts.type == BT_REAL |
3718 | && gfc_boz2real (rvalue, lvalue->ts.kind)) |
3719 | { |
3720 | if (gfc_invalid_boz ("BOZ literal constant near %L cannot " |
3721 | "be assigned to a REAL variable", |
3722 | &rvalue->where)) |
3723 | return false; |
3724 | return true; |
3725 | } |
3726 | } |
3727 | |
3728 | if (!lvalue->symtree->n.sym->attr.data |
3729 | && gfc_invalid_boz ("BOZ literal constant at %L is neither a " |
3730 | "data-stmt-constant nor an actual argument to " |
3731 | "INT, REAL, DBLE, or CMPLX intrinsic function", |
3732 | &rvalue->where)) |
3733 | return false; |
3734 | |
3735 | if (lvalue->ts.type == BT_INTEGER |
3736 | && gfc_boz2int (rvalue, lvalue->ts.kind)) |
3737 | return true; |
3738 | |
3739 | if (lvalue->ts.type == BT_REAL |
3740 | && gfc_boz2real (rvalue, lvalue->ts.kind)) |
3741 | return true; |
3742 | |
3743 | gfc_error ("BOZ literal constant near %L cannot be assigned to a " |
3744 | "%qs variable", &rvalue->where, gfc_typename (lvalue)); |
3745 | return false; |
3746 | } |
3747 | |
3748 | if (gfc_expr_attr (lvalue).pdt_kind || gfc_expr_attr (lvalue).pdt_len) |
3749 | { |
3750 | gfc_error ("The assignment to a KIND or LEN component of a " |
3751 | "parameterized type at %L is not allowed", |
3752 | &lvalue->where); |
3753 | return false; |
3754 | } |
3755 | |
3756 | if (gfc_compare_types (&lvalue->ts, &rvalue->ts)) |
3757 | return true; |
3758 | |
3759 | /* Only DATA Statements come here. */ |
3760 | if (!conform) |
3761 | { |
3762 | locus *where; |
3763 | |
3764 | /* Numeric can be converted to any other numeric. And Hollerith can be |
3765 | converted to any other type. */ |
3766 | if ((gfc_numeric_ts (&lvalue->ts) && gfc_numeric_ts (&rvalue->ts)) |
3767 | || rvalue->ts.type == BT_HOLLERITH) |
3768 | return true; |
3769 | |
3770 | if (flag_dec_char_conversionsglobal_options.x_flag_dec_char_conversions && (gfc_numeric_ts (&lvalue->ts) |
3771 | || lvalue->ts.type == BT_LOGICAL) |
3772 | && rvalue->ts.type == BT_CHARACTER |
3773 | && rvalue->ts.kind == gfc_default_character_kind) |
3774 | return true; |
3775 | |
3776 | if (lvalue->ts.type == BT_LOGICAL && rvalue->ts.type == BT_LOGICAL) |
3777 | return true; |
3778 | |
3779 | where = lvalue->where.lb ? &lvalue->where : &rvalue->where; |
3780 | gfc_error ("Incompatible types in DATA statement at %L; attempted " |
3781 | "conversion of %s to %s", where, |
3782 | gfc_typename (rvalue), gfc_typename (lvalue)); |
3783 | |
3784 | return false; |
3785 | } |
3786 | |
3787 | /* Assignment is the only case where character variables of different |
3788 | kind values can be converted into one another. */ |
3789 | if (lvalue->ts.type == BT_CHARACTER && rvalue->ts.type == BT_CHARACTER) |
3790 | { |
3791 | if (lvalue->ts.kind != rvalue->ts.kind && allow_convert) |
3792 | return gfc_convert_chartype (rvalue, &lvalue->ts); |
3793 | else |
3794 | return true; |
3795 | } |
3796 | |
3797 | if (!allow_convert) |
3798 | return true; |
3799 | |
3800 | return gfc_convert_type (rvalue, &lvalue->ts, 1); |
3801 | } |
3802 | |
3803 | |
3804 | /* Check that a pointer assignment is OK. We first check lvalue, and |
3805 | we only check rvalue if it's not an assignment to NULL() or a |
3806 | NULLIFY statement. */ |
3807 | |
3808 | bool |
3809 | gfc_check_pointer_assign (gfc_expr *lvalue, gfc_expr *rvalue, |
3810 | bool suppress_type_test, bool is_init_expr) |
3811 | { |
3812 | symbol_attribute attr, lhs_attr; |
3813 | gfc_ref *ref; |
3814 | bool is_pure, is_implicit_pure, rank_remap; |
3815 | int proc_pointer; |
3816 | bool same_rank; |
3817 | |
3818 | lhs_attr = gfc_expr_attr (lvalue); |
3819 | if (lvalue->ts.type == BT_UNKNOWN && !lhs_attr.proc_pointer) |
3820 | { |
3821 | gfc_error ("Pointer assignment target is not a POINTER at %L", |
3822 | &lvalue->where); |
3823 | return false; |
3824 | } |
3825 | |
3826 | if (lhs_attr.flavor == FL_PROCEDURE && lhs_attr.use_assoc |
3827 | && !lhs_attr.proc_pointer) |
3828 | { |
3829 | gfc_error ("%qs in the pointer assignment at %L cannot be an " |
3830 | "l-value since it is a procedure", |
3831 | lvalue->symtree->n.sym->name, &lvalue->where); |
3832 | return false; |
3833 | } |
3834 | |
3835 | proc_pointer = lvalue->symtree->n.sym->attr.proc_pointer; |
3836 | |
3837 | rank_remap = false; |
3838 | same_rank = lvalue->rank == rvalue->rank; |
3839 | for (ref = lvalue->ref; ref; ref = ref->next) |
3840 | { |
3841 | if (ref->type == REF_COMPONENT) |
3842 | proc_pointer = ref->u.c.component->attr.proc_pointer; |
3843 | |
3844 | if (ref->type == REF_ARRAY && ref->next == NULL__null) |
3845 | { |
3846 | int dim; |
3847 | |
3848 | if (ref->u.ar.type == AR_FULL) |
3849 | break; |
3850 | |
3851 | if (ref->u.ar.type != AR_SECTION) |
3852 | { |
3853 | gfc_error ("Expected bounds specification for %qs at %L", |
3854 | lvalue->symtree->n.sym->name, &lvalue->where); |
3855 | return false; |
3856 | } |
3857 | |
3858 | if (!gfc_notify_std (GFC_STD_F2003(1<<4), "Bounds specification " |
3859 | "for %qs in pointer assignment at %L", |
3860 | lvalue->symtree->n.sym->name, &lvalue->where)) |
3861 | return false; |
3862 | |
3863 | /* Fortran standard (e.g. F2018, 10.2.2 Pointer assignment): |
3864 | * |
3865 | * (C1017) If bounds-spec-list is specified, the number of |
3866 | * bounds-specs shall equal the rank of data-pointer-object. |
3867 | * |
3868 | * If bounds-spec-list appears, it specifies the lower bounds. |
3869 | * |
3870 | * (C1018) If bounds-remapping-list is specified, the number of |
3871 | * bounds-remappings shall equal the rank of data-pointer-object. |
3872 | * |
3873 | * If bounds-remapping-list appears, it specifies the upper and |
3874 | * lower bounds of each dimension of the pointer; the pointer target |
3875 | * shall be simply contiguous or of rank one. |
3876 | * |
3877 | * (C1019) If bounds-remapping-list is not specified, the ranks of |
3878 | * data-pointer-object and data-target shall be the same. |
3879 | * |
3880 | * Thus when bounds are given, all lbounds are necessary and either |
3881 | * all or none of the upper bounds; no strides are allowed. If the |
3882 | * upper bounds are present, we may do rank remapping. */ |
3883 | for (dim = 0; dim < ref->u.ar.dimen; ++dim) |
3884 | { |
3885 | if (ref->u.ar.stride[dim]) |
3886 | { |
3887 | gfc_error ("Stride must not be present at %L", |
3888 | &lvalue->where); |
3889 | return false; |
3890 | } |
3891 | if (!same_rank && (!ref->u.ar.start[dim] ||!ref->u.ar.end[dim])) |
3892 | { |
3893 | gfc_error ("Rank remapping requires a " |
3894 | "list of %<lower-bound : upper-bound%> " |
3895 | "specifications at %L", &lvalue->where); |
3896 | return false; |
3897 | } |
3898 | if (!ref->u.ar.start[dim] |
3899 | || ref->u.ar.dimen_type[dim] != DIMEN_RANGE) |
3900 | { |
3901 | gfc_error ("Expected list of %<lower-bound :%> or " |
3902 | "list of %<lower-bound : upper-bound%> " |
3903 | "specifications at %L", &lvalue->where); |
3904 | return false; |
3905 | } |
3906 | |
3907 | if (dim == 0) |
3908 | rank_remap = (ref->u.ar.end[dim] != NULL__null); |
3909 | else |
3910 | { |
3911 | if ((rank_remap && !ref->u.ar.end[dim])) |
3912 | { |
3913 | gfc_error ("Rank remapping requires a " |
3914 | "list of %<lower-bound : upper-bound%> " |
3915 | "specifications at %L", &lvalue->where); |
3916 | return false; |
3917 | } |
3918 | if (!rank_remap && ref->u.ar.end[dim]) |
3919 | { |
3920 | gfc_error ("Expected list of %<lower-bound :%> or " |
3921 | "list of %<lower-bound : upper-bound%> " |
3922 | "specifications at %L", &lvalue->where); |
3923 | return false; |
3924 | } |
3925 | } |
3926 | } |
3927 | } |
3928 | } |
3929 | |
3930 | is_pure = gfc_pure (NULL__null); |
3931 | is_implicit_pure = gfc_implicit_pure (NULL__null); |
3932 | |
3933 | /* If rvalue is a NULL() or NULLIFY, we're done. Otherwise the type, |
3934 | kind, etc for lvalue and rvalue must match, and rvalue must be a |
3935 | pure variable if we're in a pure function. */ |
3936 | if (rvalue->expr_type == EXPR_NULL && rvalue->ts.type == BT_UNKNOWN) |
3937 | return true; |
3938 | |
3939 | /* F2008, C723 (pointer) and C726 (proc-pointer); for PURE also C1283. */ |
3940 | if (lvalue->expr_type == EXPR_VARIABLE |
3941 | && gfc_is_coindexed (lvalue)) |
3942 | { |
3943 | gfc_ref *ref; |
3944 | for (ref = lvalue->ref; ref; ref = ref->next) |
3945 | if (ref->type == REF_ARRAY && ref->u.ar.codimen) |
3946 | { |
3947 | gfc_error ("Pointer object at %L shall not have a coindex", |
3948 | &lvalue->where); |
3949 | return false; |
3950 | } |
3951 | } |
3952 | |
3953 | /* Checks on rvalue for procedure pointer assignments. */ |
3954 | if (proc_pointer) |
3955 | { |
3956 | char err[200]; |
3957 | gfc_symbol *s1,*s2; |
3958 | gfc_component *comp1, *comp2; |
3959 | const char *name; |
3960 | |
3961 | attr = gfc_expr_attr (rvalue); |
3962 | if (!((rvalue->expr_type == EXPR_NULL) |
3963 | || (rvalue->expr_type == EXPR_FUNCTION && attr.proc_pointer) |
3964 | || (rvalue->expr_type == EXPR_VARIABLE && attr.proc_pointer) |
3965 | || (rvalue->expr_type == EXPR_VARIABLE |
3966 | && attr.flavor == FL_PROCEDURE))) |
3967 | { |
3968 | gfc_error ("Invalid procedure pointer assignment at %L", |
3969 | &rvalue->where); |
3970 | return false; |
3971 | } |
3972 | |
3973 | if (rvalue->expr_type == EXPR_VARIABLE && !attr.proc_pointer) |
3974 | { |
3975 | /* Check for intrinsics. */ |
3976 | gfc_symbol *sym = rvalue->symtree->n.sym; |
3977 | if (!sym->attr.intrinsic |
3978 | && (gfc_is_intrinsic (sym, 0, sym->declared_at) |
3979 | || gfc_is_intrinsic (sym, 1, sym->declared_at))) |
3980 | { |
3981 | sym->attr.intrinsic = 1; |
3982 | gfc_resolve_intrinsic (sym, &rvalue->where); |
3983 | attr = gfc_expr_attr (rvalue); |
3984 | } |
3985 | /* Check for result of embracing function. */ |
3986 | if (sym->attr.function && sym->result == sym) |
3987 | { |
3988 | gfc_namespace *ns; |
3989 | |
3990 | for (ns = gfc_current_ns; ns; ns = ns->parent) |
3991 | if (sym == ns->proc_name) |
3992 | { |
3993 | gfc_error ("Function result %qs is invalid as proc-target " |
3994 | "in procedure pointer assignment at %L", |
3995 | sym->name, &rvalue->where); |
3996 | return false; |
3997 | } |
3998 | } |
3999 | } |
4000 | if (attr.abstract) |
4001 | { |
4002 | gfc_error ("Abstract interface %qs is invalid " |
4003 | "in procedure pointer assignment at %L", |
4004 | rvalue->symtree->name, &rvalue->where); |
4005 | return false; |
4006 | } |
4007 | /* Check for F08:C729. */ |
4008 | if (attr.flavor == FL_PROCEDURE) |
4009 | { |
4010 | if (attr.proc == PROC_ST_FUNCTION) |
4011 | { |
4012 | gfc_error ("Statement function %qs is invalid " |
4013 | "in procedure pointer assignment at %L", |
4014 | rvalue->symtree->name, &rvalue->where); |
4015 | return false; |
4016 | } |
4017 | if (attr.proc == PROC_INTERNAL && |
4018 | !gfc_notify_std(GFC_STD_F2008(1<<7), "Internal procedure %qs " |
4019 | "is invalid in procedure pointer assignment " |
4020 | "at %L", rvalue->symtree->name, &rvalue->where)) |
4021 | return false; |
4022 | if (attr.intrinsic && gfc_intrinsic_actual_ok (rvalue->symtree->name, |
4023 | attr.subroutine) == 0) |
4024 | { |
4025 | gfc_error ("Intrinsic %qs at %L is invalid in procedure pointer " |
4026 | "assignment", rvalue->symtree->name, &rvalue->where); |
4027 | return false; |
4028 | } |
4029 | } |
4030 | /* Check for F08:C730. */ |
4031 | if (attr.elemental && !attr.intrinsic) |
4032 | { |
4033 | gfc_error ("Nonintrinsic elemental procedure %qs is invalid " |
4034 | "in procedure pointer assignment at %L", |
4035 | rvalue->symtree->name, &rvalue->where); |
4036 | return false; |
4037 | } |
4038 | |
4039 | /* Ensure that the calling convention is the same. As other attributes |
4040 | such as DLLEXPORT may differ, one explicitly only tests for the |
4041 | calling conventions. */ |
4042 | if (rvalue->expr_type == EXPR_VARIABLE |
4043 | && lvalue->symtree->n.sym->attr.ext_attr |
4044 | != rvalue->symtree->n.sym->attr.ext_attr) |
4045 | { |
4046 | symbol_attribute calls; |
4047 | |
4048 | calls.ext_attr = 0; |
4049 | gfc_add_ext_attribute (&calls, EXT_ATTR_CDECL, NULL__null); |
4050 | gfc_add_ext_attribute (&calls, EXT_ATTR_STDCALL, NULL__null); |
4051 | gfc_add_ext_attribute (&calls, EXT_ATTR_FASTCALL, NULL__null); |
4052 | |
4053 | if ((calls.ext_attr & lvalue->symtree->n.sym->attr.ext_attr) |
4054 | != (calls.ext_attr & rvalue->symtree->n.sym->attr.ext_attr)) |
4055 | { |
4056 | gfc_error ("Mismatch in the procedure pointer assignment " |
4057 | "at %L: mismatch in the calling convention", |
4058 | &rvalue->where); |
4059 | return false; |
4060 | } |
4061 | } |
4062 | |
4063 | comp1 = gfc_get_proc_ptr_comp (lvalue); |
4064 | if (comp1) |
4065 | s1 = comp1->ts.interface; |
4066 | else |
4067 | { |
4068 | s1 = lvalue->symtree->n.sym; |
4069 | if (s1->ts.interface) |
4070 | s1 = s1->ts.interface; |
4071 | } |
4072 | |
4073 | comp2 = gfc_get_proc_ptr_comp (rvalue); |
4074 | if (comp2) |
4075 | { |
4076 | if (rvalue->expr_type == EXPR_FUNCTION) |
4077 | { |
4078 | s2 = comp2->ts.interface->result; |
4079 | name = s2->name; |
4080 | } |
4081 | else |
4082 | { |
4083 | s2 = comp2->ts.interface; |
4084 | name = comp2->name; |
4085 | } |
4086 | } |
4087 | else if (rvalue->expr_type == EXPR_FUNCTION) |
4088 | { |
4089 | if (rvalue->value.function.esym) |
4090 | s2 = rvalue->value.function.esym->result; |
4091 | else |
4092 | s2 = rvalue->symtree->n.sym->result; |
4093 | |
4094 | name = s2->name; |
4095 | } |
4096 | else |
4097 | { |
4098 | s2 = rvalue->symtree->n.sym; |
4099 | name = s2->name; |
4100 | } |
4101 | |
4102 | if (s2 && s2->attr.proc_pointer && s2->ts.interface) |
4103 | s2 = s2->ts.interface; |
4104 | |
4105 | /* Special check for the case of absent interface on the lvalue. |
4106 | * All other interface checks are done below. */ |
4107 | if (!s1 && comp1 && comp1->attr.subroutine && s2 && s2->attr.function) |
4108 | { |
4109 | gfc_error ("Interface mismatch in procedure pointer assignment " |
4110 | "at %L: %qs is not a subroutine", &rvalue->where, name); |
4111 | return false; |
4112 | } |
4113 | |
4114 | /* F08:7.2.2.4 (4) */ |
4115 | if (s2 && gfc_explicit_interface_required (s2, err, sizeof(err))) |
4116 | { |
4117 | if (comp1 && !s1) |
4118 | { |
4119 | gfc_error ("Explicit interface required for component %qs at %L: %s", |
4120 | comp1->name, &lvalue->where, err); |
4121 | return false; |
4122 | } |
4123 | else if (s1->attr.if_source == IFSRC_UNKNOWN) |
4124 | { |
4125 | gfc_error ("Explicit interface required for %qs at %L: %s", |
4126 | s1->name, &lvalue->where, err); |
4127 | return false; |
4128 | } |
4129 | } |
4130 | if (s1 && gfc_explicit_interface_required (s1, err, sizeof(err))) |
4131 | { |
4132 | if (comp2 && !s2) |
4133 | { |
4134 | gfc_error ("Explicit interface required for component %qs at %L: %s", |
4135 | comp2->name, &rvalue->where, err); |
4136 | return false; |
4137 | } |
4138 | else if (s2->attr.if_source == IFSRC_UNKNOWN) |
4139 | { |
4140 | gfc_error ("Explicit interface required for %qs at %L: %s", |
4141 | s2->name, &rvalue->where, err); |
4142 | return false; |
4143 | } |
4144 | } |
4145 | |
4146 | if (s1 == s2 || !s1 || !s2) |
4147 | return true; |
4148 | |
4149 | if (!gfc_compare_interfaces (s1, s2, name, 0, 1, |
4150 | err, sizeof(err), NULL__null, NULL__null)) |
4151 | { |
4152 | gfc_error ("Interface mismatch in procedure pointer assignment " |
4153 | "at %L: %s", &rvalue->where, err); |
4154 | return false; |
4155 | } |
4156 | |
4157 | /* Check F2008Cor2, C729. */ |
4158 | if (!s2->attr.intrinsic && s2->attr.if_source == IFSRC_UNKNOWN |
4159 | && !s2->attr.external && !s2->attr.subroutine && !s2->attr.function) |
4160 | { |
4161 | gfc_error ("Procedure pointer target %qs at %L must be either an " |
4162 | "intrinsic, host or use associated, referenced or have " |
4163 | "the EXTERNAL attribute", s2->name, &rvalue->where); |
4164 | return false; |
4165 | } |
4166 | |
4167 | return true; |
4168 | } |
4169 | else |
4170 | { |
4171 | /* A non-proc pointer cannot point to a constant. */ |
4172 | if (rvalue->expr_type == EXPR_CONSTANT) |
4173 | { |
4174 | gfc_error_now ("Pointer assignment target cannot be a constant at %L", |
4175 | &rvalue->where); |
4176 | return false; |
4177 | } |
4178 | } |
4179 | |
4180 | if (!gfc_compare_types (&lvalue->ts, &rvalue->ts)) |
4181 | { |
4182 | /* Check for F03:C717. */ |
4183 | if (UNLIMITED_POLY (rvalue)(rvalue != __null && rvalue->ts.type == BT_CLASS && rvalue->ts.u.derived->components && rvalue-> ts.u.derived->components->ts.u.derived && rvalue ->ts.u.derived->components->ts.u.derived->attr.unlimited_polymorphic ) |
4184 | && !(UNLIMITED_POLY (lvalue)(lvalue != __null && lvalue->ts.type == BT_CLASS && lvalue->ts.u.derived->components && lvalue-> ts.u.derived->components->ts.u.derived && lvalue ->ts.u.derived->components->ts.u.derived->attr.unlimited_polymorphic ) |
4185 | || (lvalue->ts.type == BT_DERIVED |
4186 | && (lvalue->ts.u.derived->attr.is_bind_c |
4187 | || lvalue->ts.u.derived->attr.sequence)))) |
4188 | gfc_error ("Data-pointer-object at %L must be unlimited " |
4189 | "polymorphic, or of a type with the BIND or SEQUENCE " |
4190 | "attribute, to be compatible with an unlimited " |
4191 | "polymorphic target", &lvalue->where); |
4192 | else if (!suppress_type_test) |
4193 | gfc_error ("Different types in pointer assignment at %L; " |
4194 | "attempted assignment of %s to %s", &lvalue->where, |
4195 | gfc_typename (rvalue), gfc_typename (lvalue)); |
4196 | return false; |
4197 | } |
4198 | |
4199 | if (lvalue->ts.type != BT_CLASS && lvalue->ts.kind != rvalue->ts.kind) |
4200 | { |
4201 | gfc_error ("Different kind type parameters in pointer " |
4202 | "assignment at %L", &lvalue->where); |
4203 | return false; |
4204 | } |
4205 | |
4206 | if (lvalue->rank != rvalue->rank && !rank_remap) |
4207 | { |
4208 | gfc_error ("Different ranks in pointer assignment at %L", &lvalue->where); |
4209 | return false; |
4210 | } |
4211 | |
4212 | /* Make sure the vtab is present. */ |
4213 | if (lvalue->ts.type == BT_CLASS && !UNLIMITED_POLY (rvalue)(rvalue != __null && rvalue->ts.type == BT_CLASS && rvalue->ts.u.derived->components && rvalue-> ts.u.derived->components->ts.u.derived && rvalue ->ts.u.derived->components->ts.u.derived->attr.unlimited_polymorphic )) |
4214 | gfc_find_vtab (&rvalue->ts); |
4215 | |
4216 | /* Check rank remapping. */ |
4217 | if (rank_remap) |
4218 | { |
4219 | mpz_t lsize, rsize; |
4220 | |
4221 | /* If this can be determined, check that the target must be at least as |
4222 | large as the pointer assigned to it is. */ |
4223 | if (gfc_array_size (lvalue, &lsize) |
4224 | && gfc_array_size (rvalue, &rsize) |
4225 | && mpz_cmp__gmpz_cmp (rsize, lsize) < 0) |
4226 | { |
4227 | gfc_error ("Rank remapping target is smaller than size of the" |
4228 | " pointer (%ld < %ld) at %L", |
4229 | mpz_get_si__gmpz_get_si (rsize), mpz_get_si__gmpz_get_si (lsize), |
4230 | &lvalue->where); |
4231 | return false; |
4232 | } |
4233 | |
4234 | /* The target must be either rank one or it must be simply contiguous |
4235 | and F2008 must be allowed. */ |
4236 | if (rvalue->rank != 1) |
4237 | { |
4238 | if (!gfc_is_simply_contiguous (rvalue, true, false)) |
4239 | { |
4240 | gfc_error ("Rank remapping target must be rank 1 or" |
4241 | " simply contiguous at %L", &rvalue->where); |
4242 | return false; |
4243 | } |
4244 | if (!gfc_notify_std (GFC_STD_F2008(1<<7), "Rank remapping target is not " |
4245 | "rank 1 at %L", &rvalue->where)) |
4246 | return false; |
4247 | } |
4248 | } |
4249 | |
4250 | /* Now punt if we are dealing with a NULLIFY(X) or X = NULL(X). */ |
4251 | if (rvalue->expr_type == EXPR_NULL) |
4252 | return true; |
4253 | |
4254 | if (rvalue->expr_type == EXPR_VARIABLE && is_subref_array (rvalue)) |
4255 | lvalue->symtree->n.sym->attr.subref_array_pointer = 1; |
4256 | |
4257 | attr = gfc_expr_attr (rvalue); |
4258 | |
4259 | if (rvalue->expr_type == EXPR_FUNCTION && !attr.pointer) |
4260 | { |
4261 | /* F2008, C725. For PURE also C1283. Sometimes rvalue is a function call |
4262 | to caf_get. Map this to the same error message as below when it is |
4263 | still a variable expression. */ |
4264 | if (rvalue->value.function.isym |
4265 | && rvalue->value.function.isym->id == GFC_ISYM_CAF_GET) |
4266 | /* The test above might need to be extend when F08, Note 5.4 has to be |
4267 | interpreted in the way that target and pointer with the same coindex |
4268 | are allowed. */ |
4269 | gfc_error ("Data target at %L shall not have a coindex", |
4270 | &rvalue->where); |
4271 | else |
4272 | gfc_error ("Target expression in pointer assignment " |
4273 | "at %L must deliver a pointer result", |
4274 | &rvalue->where); |
4275 | return false; |
4276 | } |
4277 | |
4278 | if (is_init_expr) |
4279 | { |
4280 | gfc_symbol *sym; |
4281 | bool target; |
4282 | |
4283 | if (gfc_is_size_zero_array (rvalue)) |
4284 | { |
4285 | gfc_error ("Zero-sized array detected at %L where an entity with " |
4286 | "the TARGET attribute is expected", &rvalue->where); |
4287 | return false; |
4288 | } |
4289 | else if (!rvalue->symtree) |
4290 | { |
4291 | gfc_error ("Pointer assignment target in initialization expression " |
4292 | "does not have the TARGET attribute at %L", |
4293 | &rvalue->where); |
4294 | return false; |
4295 | } |
4296 | |
4297 | sym = rvalue->symtree->n.sym; |
4298 | |
4299 | if (sym->ts.type == BT_CLASS && sym->attr.class_ok) |
4300 | target = CLASS_DATA (sym)sym->ts.u.derived->components->attr.target; |
4301 | else |
4302 | target = sym->attr.target; |
4303 | |
4304 | if (!target && !proc_pointer) |
4305 | { |
4306 | gfc_error ("Pointer assignment target in initialization expression " |
4307 | "does not have the TARGET attribute at %L", |
4308 | &rvalue->where); |
4309 | return false; |
4310 | } |
4311 | } |
4312 | else |
4313 | { |
4314 | if (!attr.target && !attr.pointer) |
4315 | { |
4316 | gfc_error ("Pointer assignment target is neither TARGET " |
4317 | "nor POINTER at %L", &rvalue->where); |
4318 | return false; |
4319 | } |
4320 | } |
4321 | |
4322 | if (lvalue->ts.type == BT_CHARACTER) |
4323 | { |
4324 | bool t = gfc_check_same_strlen (lvalue, rvalue, "pointer assignment"); |
4325 | if (!t) |
4326 | return false; |
4327 | } |
4328 | |
4329 | if (is_pure && gfc_impure_variable (rvalue->symtree->n.sym)) |
4330 | { |
4331 | gfc_error ("Bad target in pointer assignment in PURE " |
4332 | "procedure at %L", &rvalue->where); |
4333 | } |
4334 | |
4335 | if (is_implicit_pure && gfc_impure_variable (rvalue->symtree->n.sym)) |
4336 | gfc_unset_implicit_pure (gfc_current_ns->proc_name); |
4337 | |
4338 | if (gfc_has_vector_index (rvalue)) |
4339 | { |
4340 | gfc_error ("Pointer assignment with vector subscript " |
4341 | "on rhs at %L", &rvalue->where); |
4342 | return false; |
4343 | } |
4344 | |
4345 | if (attr.is_protected && attr.use_assoc |
4346 | && !(attr.pointer || attr.proc_pointer)) |
4347 | { |
4348 | gfc_error ("Pointer assignment target has PROTECTED " |
4349 | "attribute at %L", &rvalue->where); |
4350 | return false; |
4351 | } |
4352 | |
4353 | /* F2008, C725. For PURE also C1283. */ |
4354 | if (rvalue->expr_type == EXPR_VARIABLE |
4355 | && gfc_is_coindexed (rvalue)) |
4356 | { |
4357 | gfc_ref *ref; |
4358 | for (ref = rvalue->ref; ref; ref = ref->next) |
4359 | if (ref->type == REF_ARRAY && ref->u.ar.codimen) |
4360 | { |
4361 | gfc_error ("Data target at %L shall not have a coindex", |
4362 | &rvalue->where); |
4363 | return false; |
4364 | } |
4365 | } |
4366 | |
4367 | /* Warn for assignments of contiguous pointers to targets which is not |
4368 | contiguous. Be lenient in the definition of what counts as |
4369 | contiguous. */ |
4370 | |
4371 | if (lhs_attr.contiguous |
4372 | && lhs_attr.dimension > 0) |
4373 | { |
4374 | if (gfc_is_not_contiguous (rvalue)) |
4375 | { |
4376 | gfc_error ("Assignment to contiguous pointer from " |
4377 | "non-contiguous target at %L", &rvalue->where); |
4378 | return false; |
4379 | } |
4380 | if (!gfc_is_simply_contiguous (rvalue, false, true)) |
4381 | gfc_warning (OPT_Wextra, "Assignment to contiguous pointer from " |
4382 | "non-contiguous target at %L", &rvalue->where); |
4383 | } |
4384 | |
4385 | /* Warn if it is the LHS pointer may lives longer than the RHS target. */ |
4386 | if (warn_target_lifetimeglobal_options.x_warn_target_lifetime |
4387 | && rvalue->expr_type == EXPR_VARIABLE |
4388 | && !rvalue->symtree->n.sym->attr.save |
4389 | && !rvalue->symtree->n.sym->attr.pointer && !attr.pointer |
4390 | && !rvalue->symtree->n.sym->attr.host_assoc |
4391 | && !rvalue->symtree->n.sym->attr.in_common |
4392 | && !rvalue->symtree->n.sym->attr.use_assoc |
4393 | && !rvalue->symtree->n.sym->attr.dummy) |
4394 | { |
4395 | bool warn; |
4396 | gfc_namespace *ns; |
4397 | |
4398 | warn = lvalue->symtree->n.sym->attr.dummy |
4399 | || lvalue->symtree->n.sym->attr.result |
4400 | || lvalue->symtree->n.sym->attr.function |
4401 | || (lvalue->symtree->n.sym->attr.host_assoc |
4402 | && lvalue->symtree->n.sym->ns |
4403 | != rvalue->symtree->n.sym->ns) |
4404 | || lvalue->symtree->n.sym->attr.use_assoc |
4405 | || lvalue->symtree->n.sym->attr.in_common; |
4406 | |
4407 | if (rvalue->symtree->n.sym->ns->proc_name |
4408 | && rvalue->symtree->n.sym->ns->proc_name->attr.flavor != FL_PROCEDURE |
4409 | && rvalue->symtree->n.sym->ns->proc_name->attr.flavor != FL_PROGRAM) |
4410 | for (ns = rvalue->symtree->n.sym->ns; |
4411 | ns && ns->proc_name && ns->proc_name->attr.flavor != FL_PROCEDURE; |
4412 | ns = ns->parent) |
4413 | if (ns->parent == lvalue->symtree->n.sym->ns) |
4414 | { |
4415 | warn = true; |
4416 | break; |
4417 | } |
4418 | |
4419 | if (warn) |
4420 | gfc_warning (OPT_Wtarget_lifetime, |
4421 | "Pointer at %L in pointer assignment might outlive the " |
4422 | "pointer target", &lvalue->where); |
4423 | } |
4424 | |
4425 | return true; |
4426 | } |
4427 | |
4428 | |
4429 | /* Relative of gfc_check_assign() except that the lvalue is a single |
4430 | symbol. Used for initialization assignments. */ |
4431 | |
4432 | bool |
4433 | gfc_check_assign_symbol (gfc_symbol *sym, gfc_component *comp, gfc_expr *rvalue) |
4434 | { |
4435 | gfc_expr lvalue; |
4436 | bool r; |
4437 | bool pointer, proc_pointer; |
4438 | |
4439 | memset (&lvalue, '\0', sizeof (gfc_expr)); |
4440 | |
4441 | lvalue.expr_type = EXPR_VARIABLE; |
4442 | lvalue.ts = sym->ts; |
4443 | if (sym->as) |
4444 | lvalue.rank = sym->as->rank; |
4445 | lvalue.symtree = XCNEW (gfc_symtree)((gfc_symtree *) xcalloc (1, sizeof (gfc_symtree))); |
4446 | lvalue.symtree->n.sym = sym; |
4447 | lvalue.where = sym->declared_at; |
4448 | |
4449 | if (comp) |
4450 | { |
4451 | lvalue.ref = gfc_get_ref ()((gfc_ref *) xcalloc (1, sizeof (gfc_ref))); |
4452 | lvalue.ref->type = REF_COMPONENT; |
4453 | lvalue.ref->u.c.component = comp; |
4454 | lvalue.ref->u.c.sym = sym; |
4455 | lvalue.ts = comp->ts; |
4456 | lvalue.rank = comp->as ? comp->as->rank : 0; |
4457 | lvalue.where = comp->loc; |
4458 | pointer = comp->ts.type == BT_CLASS && CLASS_DATA (comp)comp->ts.u.derived->components |
4459 | ? CLASS_DATA (comp)comp->ts.u.derived->components->attr.class_pointer : comp->attr.pointer; |
4460 | proc_pointer = comp->attr.proc_pointer; |
4461 | } |
4462 | else |
4463 | { |
4464 | pointer = sym->ts.type == BT_CLASS && CLASS_DATA (sym)sym->ts.u.derived->components |
4465 | ? CLASS_DATA (sym)sym->ts.u.derived->components->attr.class_pointer : sym->attr.pointer; |
4466 | proc_pointer = sym->attr.proc_pointer; |
4467 | } |
4468 | |
4469 | if (pointer || proc_pointer) |
4470 | r = gfc_check_pointer_assign (&lvalue, rvalue, false, true); |
4471 | else |
4472 | { |
4473 | /* If a conversion function, e.g., __convert_i8_i4, was inserted |
4474 | into an array constructor, we should check if it can be reduced |
4475 | as an initialization expression. */ |
4476 | if (rvalue->expr_type == EXPR_FUNCTION |
4477 | && rvalue->value.function.isym |
4478 | && (rvalue->value.function.isym->conversion == 1)) |
4479 | gfc_check_init_expr (rvalue); |
4480 | |
4481 | r = gfc_check_assign (&lvalue, rvalue, 1); |
4482 | } |
4483 | |
4484 | free (lvalue.symtree); |
4485 | free (lvalue.ref); |
4486 | |
4487 | if (!r) |
4488 | return r; |
4489 | |
4490 | if (pointer && rvalue->expr_type != EXPR_NULL && !proc_pointer) |
4491 | { |
4492 | /* F08:C461. Additional checks for pointer initialization. */ |
4493 | symbol_attribute attr; |
4494 | attr = gfc_expr_attr (rvalue); |
4495 | if (attr.allocatable) |
4496 | { |
4497 | gfc_error ("Pointer initialization target at %L " |
4498 | "must not be ALLOCATABLE", &rvalue->where); |
4499 | return false; |
4500 | } |
4501 | if (!attr.target || attr.pointer) |
4502 | { |
4503 | gfc_error ("Pointer initialization target at %L " |
4504 | "must have the TARGET attribute", &rvalue->where); |
4505 | return false; |
4506 | } |
4507 | |
4508 | if (!attr.save && rvalue->expr_type == EXPR_VARIABLE |
4509 | && rvalue->symtree->n.sym->ns->proc_name |
4510 | && rvalue->symtree->n.sym->ns->proc_name->attr.is_main_program) |
4511 | { |
4512 | rvalue->symtree->n.sym->ns->proc_name->attr.save = SAVE_IMPLICIT; |
4513 | attr.save = SAVE_IMPLICIT; |
4514 | } |
4515 | |
4516 | if (!attr.save) |
4517 | { |
4518 | gfc_error ("Pointer initialization target at %L " |
4519 | "must have the SAVE attribute", &rvalue->where); |
4520 | return false; |
4521 | } |
4522 | } |
4523 | |
4524 | if (proc_pointer && rvalue->expr_type != EXPR_NULL) |
4525 | { |
4526 | /* F08:C1220. Additional checks for procedure pointer initialization. */ |
4527 | symbol_attribute attr = gfc_expr_attr (rvalue); |
4528 | if (attr.proc_pointer) |
4529 | { |
4530 | gfc_error ("Procedure pointer initialization target at %L " |
4531 | "may not be a procedure pointer", &rvalue->where); |
4532 | return false; |
4533 | } |
4534 | if (attr.proc == PROC_INTERNAL) |
4535 | { |
4536 | gfc_error ("Internal procedure %qs is invalid in " |
4537 | "procedure pointer initialization at %L", |
4538 | rvalue->symtree->name, &rvalue->where); |
4539 | return false; |
4540 | } |
4541 | if (attr.dummy) |
4542 | { |
4543 | gfc_error ("Dummy procedure %qs is invalid in " |
4544 | "procedure pointer initialization at %L", |
4545 | rvalue->symtree->name, &rvalue->where); |
4546 | return false; |
4547 | } |
4548 | } |
4549 | |
4550 | return true; |
4551 | } |
4552 | |
4553 | /* Invoke gfc_build_init_expr to create an initializer expression, but do not |
4554 | * require that an expression be built. */ |
4555 | |
4556 | gfc_expr * |
4557 | gfc_build_default_init_expr (gfc_typespec *ts, locus *where) |
4558 | { |
4559 | return gfc_build_init_expr (ts, where, false); |
4560 | } |
4561 | |
4562 | /* Build an initializer for a local integer, real, complex, logical, or |
4563 | character variable, based on the command line flags finit-local-zero, |
4564 | finit-integer=, finit-real=, finit-logical=, and finit-character=. |
4565 | With force, an initializer is ALWAYS generated. */ |
4566 | |
4567 | gfc_expr * |
4568 | gfc_build_init_expr (gfc_typespec *ts, locus *where, bool force) |
4569 | { |
4570 | gfc_expr *init_expr; |
4571 | |
4572 | /* Try to build an initializer expression. */ |
4573 | init_expr = gfc_get_constant_expr (ts->type, ts->kind, where); |
4574 | |
4575 | /* If we want to force generation, make sure we default to zero. */ |
4576 | gfc_init_local_real init_real = flag_init_realglobal_options.x_flag_init_real; |
4577 | int init_logical = gfc_option.flag_init_logical; |
4578 | if (force) |
4579 | { |
4580 | if (init_real == GFC_INIT_REAL_OFF) |
4581 | init_real = GFC_INIT_REAL_ZERO; |
4582 | if (init_logical == GFC_INIT_LOGICAL_OFF) |
4583 | init_logical = GFC_INIT_LOGICAL_FALSE; |
4584 | } |
4585 | |
4586 | /* We will only initialize integers, reals, complex, logicals, and |
4587 | characters, and only if the corresponding command-line flags |
4588 | were set. Otherwise, we free init_expr and return null. */ |
4589 | switch (ts->type) |
4590 | { |
4591 | case BT_INTEGER: |
4592 | if (force || gfc_option.flag_init_integer != GFC_INIT_INTEGER_OFF) |
4593 | mpz_set_si__gmpz_set_si (init_expr->value.integer, |
4594 | gfc_option.flag_init_integer_value); |
4595 | else |
4596 | { |
4597 | gfc_free_expr (init_expr); |
4598 | init_expr = NULL__null; |
4599 | } |
4600 | break; |
4601 | |
4602 | case BT_REAL: |
4603 | switch (init_real) |
4604 | { |
4605 | case GFC_INIT_REAL_SNAN: |
4606 | init_expr->is_snan = 1; |
4607 | /* Fall through. */ |
4608 | case GFC_INIT_REAL_NAN: |
4609 | mpfr_set_nan (init_expr->value.real); |
4610 | break; |
4611 | |
4612 | case GFC_INIT_REAL_INF: |
4613 | mpfr_set_inf (init_expr->value.real, 1); |
4614 | break; |
4615 | |
4616 | case GFC_INIT_REAL_NEG_INF: |
4617 | mpfr_set_inf (init_expr->value.real, -1); |
4618 | break; |
4619 | |
4620 | case GFC_INIT_REAL_ZERO: |
4621 | mpfr_set_ui (init_expr->value.real, 0.0, GFC_RND_MODEMPFR_RNDN); |
4622 | break; |
4623 | |
4624 | default: |
4625 | gfc_free_expr (init_expr); |
4626 | init_expr = NULL__null; |
4627 | break; |
4628 | } |
4629 | break; |
4630 | |
4631 | case BT_COMPLEX: |
4632 | switch (init_real) |
4633 | { |
4634 | case GFC_INIT_REAL_SNAN: |
4635 | init_expr->is_snan = 1; |
4636 | /* Fall through. */ |
4637 | case GFC_INIT_REAL_NAN: |
4638 | mpfr_set_nan (mpc_realref (init_expr->value.complex)((init_expr->value.complex)->re)); |
4639 | mpfr_set_nan (mpc_imagref (init_expr->value.complex)((init_expr->value.complex)->im)); |
4640 | break; |
4641 | |
4642 | case GFC_INIT_REAL_INF: |
4643 | mpfr_set_inf (mpc_realref (init_expr->value.complex)((init_expr->value.complex)->re), 1); |
4644 | mpfr_set_inf (mpc_imagref (init_expr->value.complex)((init_expr->value.complex)->im), 1); |
4645 | break; |
4646 | |
4647 | case GFC_INIT_REAL_NEG_INF: |
4648 | mpfr_set_inf (mpc_realref (init_expr->value.complex)((init_expr->value.complex)->re), -1); |
4649 | mpfr_set_inf (mpc_imagref (init_expr->value.complex)((init_expr->value.complex)->im), -1); |
4650 | break; |
4651 | |
4652 | case GFC_INIT_REAL_ZERO: |
4653 | mpc_set_ui (init_expr->value.complex, 0, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
4654 | break; |
4655 | |
4656 | default: |
4657 | gfc_free_expr (init_expr); |
4658 | init_expr = NULL__null; |
4659 | break; |
4660 | } |
4661 | break; |
4662 | |
4663 | case BT_LOGICAL: |
4664 | if (init_logical == GFC_INIT_LOGICAL_FALSE) |
4665 | init_expr->value.logical = 0; |
4666 | else if (init_logical == GFC_INIT_LOGICAL_TRUE) |
4667 | init_expr->value.logical = 1; |
4668 | else |
4669 | { |
4670 | gfc_free_expr (init_expr); |
4671 | init_expr = NULL__null; |
4672 | } |
4673 | break; |
4674 | |
4675 | case BT_CHARACTER: |
4676 | /* For characters, the length must be constant in order to |
4677 | create a default initializer. */ |
4678 | if ((force || gfc_option.flag_init_character == GFC_INIT_CHARACTER_ON) |
4679 | && ts->u.cl->length |
4680 | && ts->u.cl->length->expr_type == EXPR_CONSTANT) |
4681 | { |
4682 | HOST_WIDE_INTlong char_len = gfc_mpz_get_hwi (ts->u.cl->length->value.integer); |
4683 | init_expr->value.character.length = char_len; |
4684 | init_expr->value.character.string = gfc_get_wide_string (char_len+1)((gfc_char_t *) xcalloc ((char_len+1), sizeof (gfc_char_t))); |
4685 | for (size_t i = 0; i < (size_t) char_len; i++) |
4686 | init_expr->value.character.string[i] |
4687 | = (unsigned char) gfc_option.flag_init_character_value; |
4688 | } |
4689 | else |
4690 | { |
4691 | gfc_free_expr (init_expr); |
4692 | init_expr = NULL__null; |
4693 | } |
4694 | if (!init_expr |
4695 | && (force || gfc_option.flag_init_character == GFC_INIT_CHARACTER_ON) |
4696 | && ts->u.cl->length && flag_max_stack_var_sizeglobal_options.x_flag_max_stack_var_size != 0) |
4697 | { |
4698 | gfc_actual_arglist *arg; |
4699 | init_expr = gfc_get_expr (); |
4700 | init_expr->where = *where; |
4701 | init_expr->ts = *ts; |
4702 | init_expr->expr_type = EXPR_FUNCTION; |
4703 | init_expr->value.function.isym = |
4704 | gfc_intrinsic_function_by_id (GFC_ISYM_REPEAT); |
4705 | init_expr->value.function.name = "repeat"; |
4706 | arg = gfc_get_actual_arglist ()((gfc_actual_arglist *) xcalloc (1, sizeof (gfc_actual_arglist ))); |
4707 | arg->expr = gfc_get_character_expr (ts->kind, where, NULL__null, 1); |
4708 | arg->expr->value.character.string[0] = |
4709 | gfc_option.flag_init_character_value; |
4710 | arg->next = gfc_get_actual_arglist ()((gfc_actual_arglist *) xcalloc (1, sizeof (gfc_actual_arglist ))); |
4711 | arg->next->expr = gfc_copy_expr (ts->u.cl->length); |
4712 | init_expr->value.function.actual = arg; |
4713 | } |
4714 | break; |
4715 | |
4716 | default: |
4717 | gfc_free_expr (init_expr); |
4718 | init_expr = NULL__null; |
4719 | } |
4720 | |
4721 | return init_expr; |
4722 | } |
4723 | |
4724 | /* Apply an initialization expression to a typespec. Can be used for symbols or |
4725 | components. Similar to add_init_expr_to_sym in decl.c; could probably be |
4726 | combined with some effort. */ |
4727 | |
4728 | void |
4729 | gfc_apply_init (gfc_typespec *ts, symbol_attribute *attr, gfc_expr *init) |
4730 | { |
4731 | if (ts->type == BT_CHARACTER && !attr->pointer && init |
4732 | && ts->u.cl |
4733 | && ts->u.cl->length |
4734 | && ts->u.cl->length->expr_type == EXPR_CONSTANT |
4735 | && ts->u.cl->length->ts.type == BT_INTEGER) |
4736 | { |
4737 | HOST_WIDE_INTlong len = gfc_mpz_get_hwi (ts->u.cl->length->value.integer); |
4738 | |
4739 | if (init->expr_type == EXPR_CONSTANT) |
4740 | gfc_set_constant_character_len (len, init, -1); |
4741 | else if (init |
4742 | && init->ts.type == BT_CHARACTER |
4743 | && init->ts.u.cl && init->ts.u.cl->length |
4744 | && mpz_cmp__gmpz_cmp (ts->u.cl->length->value.integer, |
4745 | init->ts.u.cl->length->value.integer)) |
4746 | { |
4747 | gfc_constructor *ctor; |
4748 | ctor = gfc_constructor_first (init->value.constructor); |
4749 | |
4750 | if (ctor) |
4751 | { |
4752 | bool has_ts = (init->ts.u.cl |
4753 | && init->ts.u.cl->length_from_typespec); |
4754 | |
4755 | /* Remember the length of the first element for checking |
4756 | that all elements *in the constructor* have the same |
4757 | length. This need not be the length of the LHS! */ |
4758 | gcc_assert (ctor->expr->expr_type == EXPR_CONSTANT)((void)(!(ctor->expr->expr_type == EXPR_CONSTANT) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 4758, __FUNCTION__), 0 : 0)); |
4759 | gcc_assert (ctor->expr->ts.type == BT_CHARACTER)((void)(!(ctor->expr->ts.type == BT_CHARACTER) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 4759, __FUNCTION__), 0 : 0)); |
4760 | gfc_charlen_t first_len = ctor->expr->value.character.length; |
4761 | |
4762 | for ( ; ctor; ctor = gfc_constructor_next (ctor)) |
4763 | if (ctor->expr->expr_type == EXPR_CONSTANT) |
4764 | { |
4765 | gfc_set_constant_character_len (len, ctor->expr, |
4766 | has_ts ? -1 : first_len); |
4767 | if (!ctor->expr->ts.u.cl) |
4768 | ctor->expr->ts.u.cl |
4769 | = gfc_new_charlen (gfc_current_ns, ts->u.cl); |
4770 | else |
4771 | ctor->expr->ts.u.cl->length |
4772 | = gfc_copy_expr (ts->u.cl->length); |
4773 | } |
4774 | } |
4775 | } |
4776 | } |
4777 | } |
4778 | |
4779 | |
4780 | /* Check whether an expression is a structure constructor and whether it has |
4781 | other values than NULL. */ |
4782 | |
4783 | bool |
4784 | is_non_empty_structure_constructor (gfc_expr * e) |
4785 | { |
4786 | if (e->expr_type != EXPR_STRUCTURE) |
4787 | return false; |
4788 | |
4789 | gfc_constructor *cons = gfc_constructor_first (e->value.constructor); |
4790 | while (cons) |
4791 | { |
4792 | if (!cons->expr || cons->expr->expr_type != EXPR_NULL) |
4793 | return true; |
4794 | cons = gfc_constructor_next (cons); |
4795 | } |
4796 | return false; |
4797 | } |
4798 | |
4799 | |
4800 | /* Check for default initializer; sym->value is not enough |
4801 | as it is also set for EXPR_NULL of allocatables. */ |
4802 | |
4803 | bool |
4804 | gfc_has_default_initializer (gfc_symbol *der) |
4805 | { |
4806 | gfc_component *c; |
4807 | |
4808 | gcc_assert (gfc_fl_struct (der->attr.flavor))((void)(!(((der->attr.flavor) == FL_DERIVED || (der->attr .flavor) == FL_UNION || (der->attr.flavor) == FL_STRUCT)) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 4808, __FUNCTION__), 0 : 0)); |
4809 | for (c = der->components; c; c = c->next) |
4810 | if (gfc_bt_struct (c->ts.type)((c->ts.type) == BT_DERIVED || (c->ts.type) == BT_UNION )) |
4811 | { |
4812 | if (!c->attr.pointer && !c->attr.proc_pointer |
4813 | && !(c->attr.allocatable && der == c->ts.u.derived) |
4814 | && ((c->initializer |
4815 | && is_non_empty_structure_constructor (c->initializer)) |
4816 | || gfc_has_default_initializer (c->ts.u.derived))) |
4817 | return true; |
4818 | if (c->attr.pointer && c->initializer) |
4819 | return true; |
4820 | } |
4821 | else |
4822 | { |
4823 | if (c->initializer) |
4824 | return true; |
4825 | } |
4826 | |
4827 | return false; |
4828 | } |
4829 | |
4830 | |
4831 | /* |
4832 | Generate an initializer expression which initializes the entirety of a union. |
4833 | A normal structure constructor is insufficient without undue effort, because |
4834 | components of maps may be oddly aligned/overlapped. (For example if a |
4835 | character is initialized from one map overtop a real from the other, only one |
4836 | byte of the real is actually initialized.) Unfortunately we don't know the |
4837 | size of the union right now, so we can't generate a proper initializer, but |
4838 | we use a NULL expr as a placeholder and do the right thing later in |
4839 | gfc_trans_subcomponent_assign. |
4840 | */ |
4841 | static gfc_expr * |
4842 | generate_union_initializer (gfc_component *un) |
4843 | { |
4844 | if (un == NULL__null || un->ts.type != BT_UNION) |
4845 | return NULL__null; |
4846 | |
4847 | gfc_expr *placeholder = gfc_get_null_expr (&un->loc); |
4848 | placeholder->ts = un->ts; |
4849 | return placeholder; |
4850 | } |
4851 | |
4852 | |
4853 | /* Get the user-specified initializer for a union, if any. This means the user |
4854 | has said to initialize component(s) of a map. For simplicity's sake we |
4855 | only allow the user to initialize the first map. We don't have to worry |
4856 | about overlapping initializers as they are released early in resolution (see |
4857 | resolve_fl_struct). */ |
4858 | |
4859 | static gfc_expr * |
4860 | get_union_initializer (gfc_symbol *union_type, gfc_component **map_p) |
4861 | { |
4862 | gfc_component *map; |
4863 | gfc_expr *init=NULL__null; |
4864 | |
4865 | if (!union_type || union_type->attr.flavor != FL_UNION) |
4866 | return NULL__null; |
4867 | |
4868 | for (map = union_type->components; map; map = map->next) |
4869 | { |
4870 | if (gfc_has_default_initializer (map->ts.u.derived)) |
4871 | { |
4872 | init = gfc_default_initializer (&map->ts); |
4873 | if (map_p) |
4874 | *map_p = map; |
4875 | break; |
4876 | } |
4877 | } |
4878 | |
4879 | if (map_p && !init) |
4880 | *map_p = NULL__null; |
4881 | |
4882 | return init; |
4883 | } |
4884 | |
4885 | static bool |
4886 | class_allocatable (gfc_component *comp) |
4887 | { |
4888 | return comp->ts.type == BT_CLASS && CLASS_DATA (comp)comp->ts.u.derived->components |
4889 | && CLASS_DATA (comp)comp->ts.u.derived->components->attr.allocatable; |
4890 | } |
4891 | |
4892 | static bool |
4893 | class_pointer (gfc_component *comp) |
4894 | { |
4895 | return comp->ts.type == BT_CLASS && CLASS_DATA (comp)comp->ts.u.derived->components |
4896 | && CLASS_DATA (comp)comp->ts.u.derived->components->attr.pointer; |
4897 | } |
4898 | |
4899 | static bool |
4900 | comp_allocatable (gfc_component *comp) |
4901 | { |
4902 | return comp->attr.allocatable || class_allocatable (comp); |
4903 | } |
4904 | |
4905 | static bool |
4906 | comp_pointer (gfc_component *comp) |
4907 | { |
4908 | return comp->attr.pointer |
4909 | || comp->attr.proc_pointer |
4910 | || comp->attr.class_pointer |
4911 | || class_pointer (comp); |
4912 | } |
4913 | |
4914 | /* Fetch or generate an initializer for the given component. |
4915 | Only generate an initializer if generate is true. */ |
4916 | |
4917 | static gfc_expr * |
4918 | component_initializer (gfc_component *c, bool generate) |
4919 | { |
4920 | gfc_expr *init = NULL__null; |
4921 | |
4922 | /* Allocatable components always get EXPR_NULL. |
4923 | Pointer components are only initialized when generating, and only if they |
4924 | do not already have an initializer. */ |
4925 | if (comp_allocatable (c) || (generate && comp_pointer (c) && !c->initializer)) |
4926 | { |
4927 | init = gfc_get_null_expr (&c->loc); |
4928 | init->ts = c->ts; |
4929 | return init; |
4930 | } |
4931 | |
4932 | /* See if we can find the initializer immediately. */ |
4933 | if (c->initializer || !generate) |
4934 | return c->initializer; |
4935 | |
4936 | /* Recursively handle derived type components. */ |
4937 | else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS) |
4938 | init = gfc_generate_initializer (&c->ts, true); |
4939 | |
4940 | else if (c->ts.type == BT_UNION && c->ts.u.derived->components) |
4941 | { |
4942 | gfc_component *map = NULL__null; |
4943 | gfc_constructor *ctor; |
4944 | gfc_expr *user_init; |
4945 | |
4946 | /* If we don't have a user initializer and we aren't generating one, this |
4947 | union has no initializer. */ |
4948 | user_init = get_union_initializer (c->ts.u.derived, &map); |
4949 | if (!user_init && !generate) |
4950 | return NULL__null; |
4951 | |
4952 | /* Otherwise use a structure constructor. */ |
4953 | init = gfc_get_structure_constructor_expr (c->ts.type, c->ts.kind, |
4954 | &c->loc); |
4955 | init->ts = c->ts; |
4956 | |
4957 | /* If we are to generate an initializer for the union, add a constructor |
4958 | which initializes the whole union first. */ |
4959 | if (generate) |
4960 | { |
4961 | ctor = gfc_constructor_get (); |
4962 | ctor->expr = generate_union_initializer (c); |
4963 | gfc_constructor_append (&init->value.constructor, ctor); |
4964 | } |
4965 | |
4966 | /* If we found an initializer in one of our maps, apply it. Note this |
4967 | is applied _after_ the entire-union initializer above if any. */ |
4968 | if (user_init) |
4969 | { |
4970 | ctor = gfc_constructor_get (); |
4971 | ctor->expr = user_init; |
4972 | ctor->n.component = map; |
4973 | gfc_constructor_append (&init->value.constructor, ctor); |
4974 | } |
4975 | } |
4976 | |
4977 | /* Treat simple components like locals. */ |
4978 | else |
4979 | { |
4980 | /* We MUST give an initializer, so force generation. */ |
4981 | init = gfc_build_init_expr (&c->ts, &c->loc, true); |
4982 | gfc_apply_init (&c->ts, &c->attr, init); |
4983 | } |
4984 | |
4985 | return init; |
4986 | } |
4987 | |
4988 | |
4989 | /* Get an expression for a default initializer of a derived type. */ |
4990 | |
4991 | gfc_expr * |
4992 | gfc_default_initializer (gfc_typespec *ts) |
4993 | { |
4994 | return gfc_generate_initializer (ts, false); |
4995 | } |
4996 | |
4997 | /* Generate an initializer expression for an iso_c_binding type |
4998 | such as c_[fun]ptr. The appropriate initializer is c_null_[fun]ptr. */ |
4999 | |
5000 | static gfc_expr * |
5001 | generate_isocbinding_initializer (gfc_symbol *derived) |
5002 | { |
5003 | /* The initializers have already been built into the c_null_[fun]ptr symbols |
5004 | from gen_special_c_interop_ptr. */ |
5005 | gfc_symtree *npsym = NULL__null; |
5006 | if (0 == strcmp (derived->name, "c_ptr")) |
5007 | gfc_find_sym_tree ("c_null_ptr", gfc_current_ns, true, &npsym); |
5008 | else if (0 == strcmp (derived->name, "c_funptr")) |
5009 | gfc_find_sym_tree ("c_null_funptr", gfc_current_ns, true, &npsym); |
5010 | else |
5011 | gfc_internal_error ("generate_isocbinding_initializer(): bad iso_c_binding" |
5012 | " type, expected %<c_ptr%> or %<c_funptr%>"); |
5013 | if (npsym) |
5014 | { |
5015 | gfc_expr *init = gfc_copy_expr (npsym->n.sym->value); |
5016 | init->symtree = npsym; |
5017 | init->ts.is_iso_c = true; |
5018 | return init; |
5019 | } |
5020 | |
5021 | return NULL__null; |
5022 | } |
5023 | |
5024 | /* Get or generate an expression for a default initializer of a derived type. |
5025 | If -finit-derived is specified, generate default initialization expressions |
5026 | for components that lack them when generate is set. */ |
5027 | |
5028 | gfc_expr * |
5029 | gfc_generate_initializer (gfc_typespec *ts, bool generate) |
5030 | { |
5031 | gfc_expr *init, *tmp; |
5032 | gfc_component *comp; |
5033 | |
5034 | generate = flag_init_derivedglobal_options.x_flag_init_derived && generate; |
5035 | |
5036 | if (ts->u.derived->ts.is_iso_c && generate) |
5037 | return generate_isocbinding_initializer (ts->u.derived); |
5038 | |
5039 | /* See if we have a default initializer in this, but not in nested |
5040 | types (otherwise we could use gfc_has_default_initializer()). |
5041 | We don't need to check if we are going to generate them. */ |
5042 | comp = ts->u.derived->components; |
5043 | if (!generate) |
5044 | { |
5045 | for (; comp; comp = comp->next) |
5046 | if (comp->initializer || comp_allocatable (comp)) |
5047 | break; |
5048 | } |
5049 | |
5050 | if (!comp) |
5051 | return NULL__null; |
5052 | |
5053 | init = gfc_get_structure_constructor_expr (ts->type, ts->kind, |
5054 | &ts->u.derived->declared_at); |
5055 | init->ts = *ts; |
5056 | |
5057 | for (comp = ts->u.derived->components; comp; comp = comp->next) |
5058 | { |
5059 | gfc_constructor *ctor = gfc_constructor_get(); |
5060 | |
5061 | /* Fetch or generate an initializer for the component. */ |
5062 | tmp = component_initializer (comp, generate); |
5063 | if (tmp) |
5064 | { |
5065 | /* Save the component ref for STRUCTUREs and UNIONs. */ |
5066 | if (ts->u.derived->attr.flavor == FL_STRUCT |
5067 | || ts->u.derived->attr.flavor == FL_UNION) |
5068 | ctor->n.component = comp; |
5069 | |
5070 | /* If the initializer was not generated, we need a copy. */ |
5071 | ctor->expr = comp->initializer ? gfc_copy_expr (tmp) : tmp; |
5072 | if ((comp->ts.type != tmp->ts.type || comp->ts.kind != tmp->ts.kind) |
5073 | && !comp->attr.pointer && !comp->attr.proc_pointer) |
5074 | { |
5075 | bool val; |
5076 | val = gfc_convert_type_warn (ctor->expr, &comp->ts, 1, false); |
5077 | if (val == false) |
5078 | return NULL__null; |
5079 | } |
5080 | } |
5081 | |
5082 | gfc_constructor_append (&init->value.constructor, ctor); |
5083 | } |
5084 | |
5085 | return init; |
5086 | } |
5087 | |
5088 | |
5089 | /* Given a symbol, create an expression node with that symbol as a |
5090 | variable. If the symbol is array valued, setup a reference of the |
5091 | whole array. */ |
5092 | |
5093 | gfc_expr * |
5094 | gfc_get_variable_expr (gfc_symtree *var) |
5095 | { |
5096 | gfc_expr *e; |
5097 | |
5098 | e = gfc_get_expr (); |
5099 | e->expr_type = EXPR_VARIABLE; |
5100 | e->symtree = var; |
5101 | e->ts = var->n.sym->ts; |
5102 | |
5103 | if (var->n.sym->attr.flavor != FL_PROCEDURE |
5104 | && ((var->n.sym->as != NULL__null && var->n.sym->ts.type != BT_CLASS) |
5105 | || (var->n.sym->ts.type == BT_CLASS && CLASS_DATA (var->n.sym)var->n.sym->ts.u.derived->components |
5106 | && CLASS_DATA (var->n.sym)var->n.sym->ts.u.derived->components->as))) |
5107 | { |
5108 | e->rank = var->n.sym->ts.type == BT_CLASS |
5109 | ? CLASS_DATA (var->n.sym)var->n.sym->ts.u.derived->components->as->rank : var->n.sym->as->rank; |
5110 | e->ref = gfc_get_ref ()((gfc_ref *) xcalloc (1, sizeof (gfc_ref))); |
5111 | e->ref->type = REF_ARRAY; |
5112 | e->ref->u.ar.type = AR_FULL; |
5113 | e->ref->u.ar.as = gfc_copy_array_spec (var->n.sym->ts.type == BT_CLASS |
5114 | ? CLASS_DATA (var->n.sym)var->n.sym->ts.u.derived->components->as |
5115 | : var->n.sym->as); |
5116 | } |
5117 | |
5118 | return e; |
5119 | } |
5120 | |
5121 | |
5122 | /* Adds a full array reference to an expression, as needed. */ |
5123 | |
5124 | void |
5125 | gfc_add_full_array_ref (gfc_expr *e, gfc_array_spec *as) |
5126 | { |
5127 | gfc_ref *ref; |
5128 | for (ref = e->ref; ref; ref = ref->next) |
5129 | if (!ref->next) |
5130 | break; |
5131 | if (ref) |
5132 | { |
5133 | ref->next = gfc_get_ref ()((gfc_ref *) xcalloc (1, sizeof (gfc_ref))); |
5134 | ref = ref->next; |
5135 | } |
5136 | else |
5137 | { |
5138 | e->ref = gfc_get_ref ()((gfc_ref *) xcalloc (1, sizeof (gfc_ref))); |
5139 | ref = e->ref; |
5140 | } |
5141 | ref->type = REF_ARRAY; |
5142 | ref->u.ar.type = AR_FULL; |
5143 | ref->u.ar.dimen = e->rank; |
5144 | ref->u.ar.where = e->where; |
5145 | ref->u.ar.as = as; |
5146 | } |
5147 | |
5148 | |
5149 | gfc_expr * |
5150 | gfc_lval_expr_from_sym (gfc_symbol *sym) |
5151 | { |
5152 | gfc_expr *lval; |
5153 | gfc_array_spec *as; |
5154 | lval = gfc_get_expr (); |
5155 | lval->expr_type = EXPR_VARIABLE; |
5156 | lval->where = sym->declared_at; |
5157 | lval->ts = sym->ts; |
5158 | lval->symtree = gfc_find_symtree (sym->ns->sym_root, sym->name); |
5159 | |
5160 | /* It will always be a full array. */ |
5161 | as = IS_CLASS_ARRAY (sym)(sym->ts.type == BT_CLASS && sym->ts.u.derived-> components && sym->ts.u.derived->components-> attr.dimension && !sym->ts.u.derived->components ->attr.class_pointer) ? CLASS_DATA (sym)sym->ts.u.derived->components->as : sym->as; |
5162 | lval->rank = as ? as->rank : 0; |
5163 | if (lval->rank) |
5164 | gfc_add_full_array_ref (lval, as); |
5165 | return lval; |
5166 | } |
5167 | |
5168 | |
5169 | /* Returns the array_spec of a full array expression. A NULL is |
5170 | returned otherwise. */ |
5171 | gfc_array_spec * |
5172 | gfc_get_full_arrayspec_from_expr (gfc_expr *expr) |
5173 | { |
5174 | gfc_array_spec *as; |
5175 | gfc_ref *ref; |
5176 | |
5177 | if (expr->rank == 0) |
5178 | return NULL__null; |
5179 | |
5180 | /* Follow any component references. */ |
5181 | if (expr->expr_type == EXPR_VARIABLE |
5182 | || expr->expr_type == EXPR_CONSTANT) |
5183 | { |
5184 | if (expr->symtree) |
5185 | as = expr->symtree->n.sym->as; |
5186 | else |
5187 | as = NULL__null; |
5188 | |
5189 | for (ref = expr->ref; ref; ref = ref->next) |
5190 | { |
5191 | switch (ref->type) |
5192 | { |
5193 | case REF_COMPONENT: |
5194 | as = ref->u.c.component->as; |
5195 | continue; |
5196 | |
5197 | case REF_SUBSTRING: |
5198 | case REF_INQUIRY: |
5199 | continue; |
5200 | |
5201 | case REF_ARRAY: |
5202 | { |
5203 | switch (ref->u.ar.type) |
5204 | { |
5205 | case AR_ELEMENT: |
5206 | case AR_SECTION: |
5207 | case AR_UNKNOWN: |
5208 | as = NULL__null; |
5209 | continue; |
5210 | |
5211 | case AR_FULL: |
5212 | break; |
5213 | } |
5214 | break; |
5215 | } |
5216 | } |
5217 | } |
5218 | } |
5219 | else |
5220 | as = NULL__null; |
5221 | |
5222 | return as; |
5223 | } |
5224 | |
5225 | |
5226 | /* General expression traversal function. */ |
5227 | |
5228 | bool |
5229 | gfc_traverse_expr (gfc_expr *expr, gfc_symbol *sym, |
5230 | bool (*func)(gfc_expr *, gfc_symbol *, int*), |
5231 | int f) |
5232 | { |
5233 | gfc_array_ref ar; |
5234 | gfc_ref *ref; |
5235 | gfc_actual_arglist *args; |
5236 | gfc_constructor *c; |
5237 | int i; |
5238 | |
5239 | if (!expr) |
5240 | return false; |
5241 | |
5242 | if ((*func) (expr, sym, &f)) |
5243 | return true; |
5244 | |
5245 | if (expr->ts.type == BT_CHARACTER |
5246 | && expr->ts.u.cl |
5247 | && expr->ts.u.cl->length |
5248 | && expr->ts.u.cl->length->expr_type != EXPR_CONSTANT |
5249 | && gfc_traverse_expr (expr->ts.u.cl->length, sym, func, f)) |
5250 | return true; |
5251 | |
5252 | switch (expr->expr_type) |
5253 | { |
5254 | case EXPR_PPC: |
5255 | case EXPR_COMPCALL: |
5256 | case EXPR_FUNCTION: |
5257 | for (args = expr->value.function.actual; args; args = args->next) |
5258 | { |
5259 | if (gfc_traverse_expr (args->expr, sym, func, f)) |
5260 | return true; |
5261 | } |
5262 | break; |
5263 | |
5264 | case EXPR_VARIABLE: |
5265 | case EXPR_CONSTANT: |
5266 | case EXPR_NULL: |
5267 | case EXPR_SUBSTRING: |
5268 | break; |
5269 | |
5270 | case EXPR_STRUCTURE: |
5271 | case EXPR_ARRAY: |
5272 | for (c = gfc_constructor_first (expr->value.constructor); |
5273 | c; c = gfc_constructor_next (c)) |
5274 | { |
5275 | if (gfc_traverse_expr (c->expr, sym, func, f)) |
5276 | return true; |
5277 | if (c->iterator) |
5278 | { |
5279 | if (gfc_traverse_expr (c->iterator->var, sym, func, f)) |
5280 | return true; |
5281 | if (gfc_traverse_expr (c->iterator->start, sym, func, f)) |
5282 | return true; |
5283 | if (gfc_traverse_expr (c->iterator->end, sym, func, f)) |
5284 | return true; |
5285 | if (gfc_traverse_expr (c->iterator->step, sym, func, f)) |
5286 | return true; |
5287 | } |
5288 | } |
5289 | break; |
5290 | |
5291 | case EXPR_OP: |
5292 | if (gfc_traverse_expr (expr->value.op.op1, sym, func, f)) |
5293 | return true; |
5294 | if (gfc_traverse_expr (expr->value.op.op2, sym, func, f)) |
5295 | return true; |
5296 | break; |
5297 | |
5298 | default: |
5299 | gcc_unreachable ()(fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 5299, __FUNCTION__)); |
5300 | break; |
5301 | } |
5302 | |
5303 | ref = expr->ref; |
5304 | while (ref != NULL__null) |
5305 | { |
5306 | switch (ref->type) |
5307 | { |
5308 | case REF_ARRAY: |
5309 | ar = ref->u.ar; |
5310 | for (i = 0; i < GFC_MAX_DIMENSIONS15; i++) |
5311 | { |
5312 | if (gfc_traverse_expr (ar.start[i], sym, func, f)) |
5313 | return true; |
5314 | if (gfc_traverse_expr (ar.end[i], sym, func, f)) |
5315 | return true; |
5316 | if (gfc_traverse_expr (ar.stride[i], sym, func, f)) |
5317 | return true; |
5318 | } |
5319 | break; |
5320 | |
5321 | case REF_SUBSTRING: |
5322 | if (gfc_traverse_expr (ref->u.ss.start, sym, func, f)) |
5323 | return true; |
5324 | if (gfc_traverse_expr (ref->u.ss.end, sym, func, f)) |
5325 | return true; |
5326 | break; |
5327 | |
5328 | case REF_COMPONENT: |
5329 | if (ref->u.c.component->ts.type == BT_CHARACTER |
5330 | && ref->u.c.component->ts.u.cl |
5331 | && ref->u.c.component->ts.u.cl->length |
5332 | && ref->u.c.component->ts.u.cl->length->expr_type |
5333 | != EXPR_CONSTANT |
5334 | && gfc_traverse_expr (ref->u.c.component->ts.u.cl->length, |
5335 | sym, func, f)) |
5336 | return true; |
5337 | |
5338 | if (ref->u.c.component->as) |
5339 | for (i = 0; i < ref->u.c.component->as->rank |
5340 | + ref->u.c.component->as->corank; i++) |
5341 | { |
5342 | if (gfc_traverse_expr (ref->u.c.component->as->lower[i], |
5343 | sym, func, f)) |
5344 | return true; |
5345 | if (gfc_traverse_expr (ref->u.c.component->as->upper[i], |
5346 | sym, func, f)) |
5347 | return true; |
5348 | } |
5349 | break; |
5350 | |
5351 | case REF_INQUIRY: |
5352 | return true; |
5353 | |
5354 | default: |
5355 | gcc_unreachable ()(fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 5355, __FUNCTION__)); |
5356 | } |
5357 | ref = ref->next; |
5358 | } |
5359 | return false; |
5360 | } |
5361 | |
5362 | /* Traverse expr, marking all EXPR_VARIABLE symbols referenced. */ |
5363 | |
5364 | static bool |
5365 | expr_set_symbols_referenced (gfc_expr *expr, |
5366 | gfc_symbol *sym ATTRIBUTE_UNUSED__attribute__ ((__unused__)), |
5367 | int *f ATTRIBUTE_UNUSED__attribute__ ((__unused__))) |
5368 | { |
5369 | if (expr->expr_type != EXPR_VARIABLE) |
5370 | return false; |
5371 | gfc_set_sym_referenced (expr->symtree->n.sym); |
5372 | return false; |
5373 | } |
5374 | |
5375 | void |
5376 | gfc_expr_set_symbols_referenced (gfc_expr *expr) |
5377 | { |
5378 | gfc_traverse_expr (expr, NULL__null, expr_set_symbols_referenced, 0); |
5379 | } |
5380 | |
5381 | |
5382 | /* Determine if an expression is a procedure pointer component and return |
5383 | the component in that case. Otherwise return NULL. */ |
5384 | |
5385 | gfc_component * |
5386 | gfc_get_proc_ptr_comp (gfc_expr *expr) |
5387 | { |
5388 | gfc_ref *ref; |
5389 | |
5390 | if (!expr || !expr->ref) |
5391 | return NULL__null; |
5392 | |
5393 | ref = expr->ref; |
5394 | while (ref->next) |
5395 | ref = ref->next; |
5396 | |
5397 | if (ref->type == REF_COMPONENT |
5398 | && ref->u.c.component->attr.proc_pointer) |
5399 | return ref->u.c.component; |
5400 | |
5401 | return NULL__null; |
5402 | } |
5403 | |
5404 | |
5405 | /* Determine if an expression is a procedure pointer component. */ |
5406 | |
5407 | bool |
5408 | gfc_is_proc_ptr_comp (gfc_expr *expr) |
5409 | { |
5410 | return (gfc_get_proc_ptr_comp (expr) != NULL__null); |
5411 | } |
5412 | |
5413 | |
5414 | /* Determine if an expression is a function with an allocatable class scalar |
5415 | result. */ |
5416 | bool |
5417 | gfc_is_alloc_class_scalar_function (gfc_expr *expr) |
5418 | { |
5419 | if (expr->expr_type == EXPR_FUNCTION |
5420 | && expr->value.function.esym |
5421 | && expr->value.function.esym->result |
5422 | && expr->value.function.esym->result->ts.type == BT_CLASS |
5423 | && !CLASS_DATA (expr->value.function.esym->result)expr->value.function.esym->result->ts.u.derived-> components->attr.dimension |
5424 | && CLASS_DATA (expr->value.function.esym->result)expr->value.function.esym->result->ts.u.derived-> components->attr.allocatable) |
5425 | return true; |
5426 | |
5427 | return false; |
5428 | } |
5429 | |
5430 | |
5431 | /* Determine if an expression is a function with an allocatable class array |
5432 | result. */ |
5433 | bool |
5434 | gfc_is_class_array_function (gfc_expr *expr) |
5435 | { |
5436 | if (expr->expr_type == EXPR_FUNCTION |
5437 | && expr->value.function.esym |
5438 | && expr->value.function.esym->result |
5439 | && expr->value.function.esym->result->ts.type == BT_CLASS |
5440 | && CLASS_DATA (expr->value.function.esym->result)expr->value.function.esym->result->ts.u.derived-> components->attr.dimension |
5441 | && (CLASS_DATA (expr->value.function.esym->result)expr->value.function.esym->result->ts.u.derived-> components->attr.allocatable |
5442 | || CLASS_DATA (expr->value.function.esym->result)expr->value.function.esym->result->ts.u.derived-> components->attr.pointer)) |
5443 | return true; |
5444 | |
5445 | return false; |
5446 | } |
5447 | |
5448 | |
5449 | /* Walk an expression tree and check each variable encountered for being typed. |
5450 | If strict is not set, a top-level variable is tolerated untyped in -std=gnu |
5451 | mode as is a basic arithmetic expression using those; this is for things in |
5452 | legacy-code like: |
5453 | |
5454 | INTEGER :: arr(n), n |
5455 | INTEGER :: arr(n + 1), n |
5456 | |
5457 | The namespace is needed for IMPLICIT typing. */ |
5458 | |
5459 | static gfc_namespace* check_typed_ns; |
5460 | |
5461 | static bool |
5462 | expr_check_typed_help (gfc_expr* e, gfc_symbol* sym ATTRIBUTE_UNUSED__attribute__ ((__unused__)), |
5463 | int* f ATTRIBUTE_UNUSED__attribute__ ((__unused__))) |
5464 | { |
5465 | bool t; |
5466 | |
5467 | if (e->expr_type != EXPR_VARIABLE) |
5468 | return false; |
5469 | |
5470 | gcc_assert (e->symtree)((void)(!(e->symtree) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 5470, __FUNCTION__), 0 : 0)); |
5471 | t = gfc_check_symbol_typed (e->symtree->n.sym, check_typed_ns, |
5472 | true, e->where); |
5473 | |
5474 | return (!t); |
5475 | } |
5476 | |
5477 | bool |
5478 | gfc_expr_check_typed (gfc_expr* e, gfc_namespace* ns, bool strict) |
5479 | { |
5480 | bool error_found; |
5481 | |
5482 | /* If this is a top-level variable or EXPR_OP, do the check with strict given |
5483 | to us. */ |
5484 | if (!strict) |
5485 | { |
5486 | if (e->expr_type == EXPR_VARIABLE && !e->ref) |
5487 | return gfc_check_symbol_typed (e->symtree->n.sym, ns, strict, e->where); |
5488 | |
5489 | if (e->expr_type == EXPR_OP) |
5490 | { |
5491 | bool t = true; |
5492 | |
5493 | gcc_assert (e->value.op.op1)((void)(!(e->value.op.op1) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 5493, __FUNCTION__), 0 : 0)); |
5494 | t = gfc_expr_check_typed (e->value.op.op1, ns, strict); |
5495 | |
5496 | if (t && e->value.op.op2) |
5497 | t = gfc_expr_check_typed (e->value.op.op2, ns, strict); |
5498 | |
5499 | return t; |
5500 | } |
5501 | } |
5502 | |
5503 | /* Otherwise, walk the expression and do it strictly. */ |
5504 | check_typed_ns = ns; |
5505 | error_found = gfc_traverse_expr (e, NULL__null, &expr_check_typed_help, 0); |
5506 | |
5507 | return error_found ? false : true; |
5508 | } |
5509 | |
5510 | |
5511 | /* This function returns true if it contains any references to PDT KIND |
5512 | or LEN parameters. */ |
5513 | |
5514 | static bool |
5515 | derived_parameter_expr (gfc_expr* e, gfc_symbol* sym ATTRIBUTE_UNUSED__attribute__ ((__unused__)), |
5516 | int* f ATTRIBUTE_UNUSED__attribute__ ((__unused__))) |
5517 | { |
5518 | if (e->expr_type != EXPR_VARIABLE) |
5519 | return false; |
5520 | |
5521 | gcc_assert (e->symtree)((void)(!(e->symtree) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 5521, __FUNCTION__), 0 : 0)); |
5522 | if (e->symtree->n.sym->attr.pdt_kind |
5523 | || e->symtree->n.sym->attr.pdt_len) |
5524 | return true; |
5525 | |
5526 | return false; |
5527 | } |
5528 | |
5529 | |
5530 | bool |
5531 | gfc_derived_parameter_expr (gfc_expr *e) |
5532 | { |
5533 | return gfc_traverse_expr (e, NULL__null, &derived_parameter_expr, 0); |
5534 | } |
5535 | |
5536 | |
5537 | /* This function returns the overall type of a type parameter spec list. |
5538 | If all the specs are explicit, SPEC_EXPLICIT is returned. If any of the |
5539 | parameters are assumed/deferred then SPEC_ASSUMED/DEFERRED is returned |
5540 | unless derived is not NULL. In this latter case, all the LEN parameters |
5541 | must be either assumed or deferred for the return argument to be set to |
5542 | anything other than SPEC_EXPLICIT. */ |
5543 | |
5544 | gfc_param_spec_type |
5545 | gfc_spec_list_type (gfc_actual_arglist *param_list, gfc_symbol *derived) |
5546 | { |
5547 | gfc_param_spec_type res = SPEC_EXPLICIT; |
5548 | gfc_component *c; |
5549 | bool seen_assumed = false; |
5550 | bool seen_deferred = false; |
5551 | |
5552 | if (derived == NULL__null) |
5553 | { |
5554 | for (; param_list; param_list = param_list->next) |
5555 | if (param_list->spec_type == SPEC_ASSUMED |
5556 | || param_list->spec_type == SPEC_DEFERRED) |
5557 | return param_list->spec_type; |
5558 | } |
5559 | else |
5560 | { |
5561 | for (; param_list; param_list = param_list->next) |
5562 | { |
5563 | c = gfc_find_component (derived, param_list->name, |
5564 | true, true, NULL__null); |
5565 | gcc_assert (c != NULL)((void)(!(c != __null) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 5565, __FUNCTION__), 0 : 0)); |
5566 | if (c->attr.pdt_kind) |
5567 | continue; |
5568 | else if (param_list->spec_type == SPEC_EXPLICIT) |
5569 | return SPEC_EXPLICIT; |
5570 | seen_assumed = param_list->spec_type == SPEC_ASSUMED; |
5571 | seen_deferred = param_list->spec_type == SPEC_DEFERRED; |
5572 | if (seen_assumed && seen_deferred) |
5573 | return SPEC_EXPLICIT; |
5574 | } |
5575 | res = seen_assumed ? SPEC_ASSUMED : SPEC_DEFERRED; |
5576 | } |
5577 | return res; |
5578 | } |
5579 | |
5580 | |
5581 | bool |
5582 | gfc_ref_this_image (gfc_ref *ref) |
5583 | { |
5584 | int n; |
5585 | |
5586 | gcc_assert (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)((void)(!(ref->type == REF_ARRAY && ref->u.ar.codimen > 0) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 5586, __FUNCTION__), 0 : 0)); |
5587 | |
5588 | for (n = ref->u.ar.dimen; n < ref->u.ar.dimen + ref->u.ar.codimen; n++) |
5589 | if (ref->u.ar.dimen_type[n] != DIMEN_THIS_IMAGE) |
5590 | return false; |
5591 | |
5592 | return true; |
5593 | } |
5594 | |
5595 | gfc_expr * |
5596 | gfc_find_team_co (gfc_expr *e) |
5597 | { |
5598 | gfc_ref *ref; |
5599 | |
5600 | for (ref = e->ref; ref; ref = ref->next) |
5601 | if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0) |
5602 | return ref->u.ar.team; |
5603 | |
5604 | if (e->value.function.actual->expr) |
5605 | for (ref = e->value.function.actual->expr->ref; ref; |
5606 | ref = ref->next) |
5607 | if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0) |
5608 | return ref->u.ar.team; |
5609 | |
5610 | return NULL__null; |
5611 | } |
5612 | |
5613 | gfc_expr * |
5614 | gfc_find_stat_co (gfc_expr *e) |
5615 | { |
5616 | gfc_ref *ref; |
5617 | |
5618 | for (ref = e->ref; ref; ref = ref->next) |
5619 | if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0) |
5620 | return ref->u.ar.stat; |
5621 | |
5622 | if (e->value.function.actual->expr) |
5623 | for (ref = e->value.function.actual->expr->ref; ref; |
5624 | ref = ref->next) |
5625 | if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0) |
5626 | return ref->u.ar.stat; |
5627 | |
5628 | return NULL__null; |
5629 | } |
5630 | |
5631 | bool |
5632 | gfc_is_coindexed (gfc_expr *e) |
5633 | { |
5634 | gfc_ref *ref; |
5635 | |
5636 | for (ref = e->ref; ref; ref = ref->next) |
5637 | if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0) |
5638 | return !gfc_ref_this_image (ref); |
5639 | |
5640 | return false; |
5641 | } |
5642 | |
5643 | |
5644 | /* Coarrays are variables with a corank but not being coindexed. However, also |
5645 | the following is a coarray: A subobject of a coarray is a coarray if it does |
5646 | not have any cosubscripts, vector subscripts, allocatable component |
5647 | selection, or pointer component selection. (F2008, 2.4.7) */ |
5648 | |
5649 | bool |
5650 | gfc_is_coarray (gfc_expr *e) |
5651 | { |
5652 | gfc_ref *ref; |
5653 | gfc_symbol *sym; |
5654 | gfc_component *comp; |
5655 | bool coindexed; |
5656 | bool coarray; |
5657 | int i; |
5658 | |
5659 | if (e->expr_type != EXPR_VARIABLE) |
5660 | return false; |
5661 | |
5662 | coindexed = false; |
5663 | sym = e->symtree->n.sym; |
5664 | |
5665 | if (sym->ts.type == BT_CLASS && sym->attr.class_ok) |
5666 | coarray = CLASS_DATA (sym)sym->ts.u.derived->components->attr.codimension; |
5667 | else |
5668 | coarray = sym->attr.codimension; |
5669 | |
5670 | for (ref = e->ref; ref; ref = ref->next) |
5671 | switch (ref->type) |
5672 | { |
5673 | case REF_COMPONENT: |
5674 | comp = ref->u.c.component; |
5675 | if (comp->ts.type == BT_CLASS && comp->attr.class_ok |
5676 | && (CLASS_DATA (comp)comp->ts.u.derived->components->attr.class_pointer |
5677 | || CLASS_DATA (comp)comp->ts.u.derived->components->attr.allocatable)) |
5678 | { |
5679 | coindexed = false; |
5680 | coarray = CLASS_DATA (comp)comp->ts.u.derived->components->attr.codimension; |
5681 | } |
5682 | else if (comp->attr.pointer || comp->attr.allocatable) |
5683 | { |
5684 | coindexed = false; |
5685 | coarray = comp->attr.codimension; |
5686 | } |
5687 | break; |
5688 | |
5689 | case REF_ARRAY: |
5690 | if (!coarray) |
5691 | break; |
5692 | |
5693 | if (ref->u.ar.codimen > 0 && !gfc_ref_this_image (ref)) |
5694 | { |
5695 | coindexed = true; |
5696 | break; |
5697 | } |
5698 | |
5699 | for (i = 0; i < ref->u.ar.dimen; i++) |
5700 | if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR) |
5701 | { |
5702 | coarray = false; |
5703 | break; |
5704 | } |
5705 | break; |
5706 | |
5707 | case REF_SUBSTRING: |
5708 | case REF_INQUIRY: |
5709 | break; |
5710 | } |
5711 | |
5712 | return coarray && !coindexed; |
5713 | } |
5714 | |
5715 | |
5716 | int |
5717 | gfc_get_corank (gfc_expr *e) |
5718 | { |
5719 | int corank; |
5720 | gfc_ref *ref; |
5721 | |
5722 | if (!gfc_is_coarray (e)) |
5723 | return 0; |
5724 | |
5725 | if (e->ts.type == BT_CLASS && e->ts.u.derived->components) |
5726 | corank = e->ts.u.derived->components->as |
5727 | ? e->ts.u.derived->components->as->corank : 0; |
5728 | else |
5729 | corank = e->symtree->n.sym->as ? e->symtree->n.sym->as->corank : 0; |
5730 | |
5731 | for (ref = e->ref; ref; ref = ref->next) |
5732 | { |
5733 | if (ref->type == REF_ARRAY) |
5734 | corank = ref->u.ar.as->corank; |
5735 | gcc_assert (ref->type != REF_SUBSTRING)((void)(!(ref->type != REF_SUBSTRING) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 5735, __FUNCTION__), 0 : 0)); |
5736 | } |
5737 | |
5738 | return corank; |
5739 | } |
5740 | |
5741 | |
5742 | /* Check whether the expression has an ultimate allocatable component. |
5743 | Being itself allocatable does not count. */ |
5744 | bool |
5745 | gfc_has_ultimate_allocatable (gfc_expr *e) |
5746 | { |
5747 | gfc_ref *ref, *last = NULL__null; |
5748 | |
5749 | if (e->expr_type != EXPR_VARIABLE) |
5750 | return false; |
5751 | |
5752 | for (ref = e->ref; ref; ref = ref->next) |
5753 | if (ref->type == REF_COMPONENT) |
5754 | last = ref; |
5755 | |
5756 | if (last && last->u.c.component->ts.type == BT_CLASS) |
5757 | return CLASS_DATA (last->u.c.component)last->u.c.component->ts.u.derived->components->attr.alloc_comp; |
5758 | else if (last && last->u.c.component->ts.type == BT_DERIVED) |
5759 | return last->u.c.component->ts.u.derived->attr.alloc_comp; |
5760 | else if (last) |
5761 | return false; |
5762 | |
5763 | if (e->ts.type == BT_CLASS) |
5764 | return CLASS_DATA (e)e->ts.u.derived->components->attr.alloc_comp; |
5765 | else if (e->ts.type == BT_DERIVED) |
5766 | return e->ts.u.derived->attr.alloc_comp; |
5767 | else |
5768 | return false; |
5769 | } |
5770 | |
5771 | |
5772 | /* Check whether the expression has an pointer component. |
5773 | Being itself a pointer does not count. */ |
5774 | bool |
5775 | gfc_has_ultimate_pointer (gfc_expr *e) |
5776 | { |
5777 | gfc_ref *ref, *last = NULL__null; |
5778 | |
5779 | if (e->expr_type != EXPR_VARIABLE) |
5780 | return false; |
5781 | |
5782 | for (ref = e->ref; ref; ref = ref->next) |
5783 | if (ref->type == REF_COMPONENT) |
5784 | last = ref; |
5785 | |
5786 | if (last && last->u.c.component->ts.type == BT_CLASS) |
5787 | return CLASS_DATA (last->u.c.component)last->u.c.component->ts.u.derived->components->attr.pointer_comp; |
5788 | else if (last && last->u.c.component->ts.type == BT_DERIVED) |
5789 | return last->u.c.component->ts.u.derived->attr.pointer_comp; |
5790 | else if (last) |
5791 | return false; |
5792 | |
5793 | if (e->ts.type == BT_CLASS) |
5794 | return CLASS_DATA (e)e->ts.u.derived->components->attr.pointer_comp; |
5795 | else if (e->ts.type == BT_DERIVED) |
5796 | return e->ts.u.derived->attr.pointer_comp; |
5797 | else |
5798 | return false; |
5799 | } |
5800 | |
5801 | |
5802 | /* Check whether an expression is "simply contiguous", cf. F2008, 6.5.4. |
5803 | Note: A scalar is not regarded as "simply contiguous" by the standard. |
5804 | if bool is not strict, some further checks are done - for instance, |
5805 | a "(::1)" is accepted. */ |
5806 | |
5807 | bool |
5808 | gfc_is_simply_contiguous (gfc_expr *expr, bool strict, bool permit_element) |
5809 | { |
5810 | bool colon; |
5811 | int i; |
5812 | gfc_array_ref *ar = NULL__null; |
5813 | gfc_ref *ref, *part_ref = NULL__null; |
5814 | gfc_symbol *sym; |
5815 | |
5816 | if (expr->expr_type == EXPR_ARRAY) |
5817 | return true; |
5818 | |
5819 | if (expr->expr_type == EXPR_FUNCTION) |
5820 | { |
5821 | if (expr->value.function.esym) |
5822 | return expr->value.function.esym->result->attr.contiguous; |
5823 | else |
5824 | { |
5825 | /* Type-bound procedures. */ |
5826 | gfc_symbol *s = expr->symtree->n.sym; |
5827 | if (s->ts.type != BT_CLASS && s->ts.type != BT_DERIVED) |
5828 | return false; |
5829 | |
5830 | gfc_ref *rc = NULL__null; |
5831 | for (gfc_ref *r = expr->ref; r; r = r->next) |
5832 | if (r->type == REF_COMPONENT) |
5833 | rc = r; |
5834 | |
5835 | if (rc == NULL__null || rc->u.c.component == NULL__null |
5836 | || rc->u.c.component->ts.interface == NULL__null) |
5837 | return false; |
5838 | |
5839 | return rc->u.c.component->ts.interface->attr.contiguous; |
5840 | } |
5841 | } |
5842 | else if (expr->expr_type != EXPR_VARIABLE) |
5843 | return false; |
5844 | |
5845 | if (!permit_element && expr->rank == 0) |
5846 | return false; |
5847 | |
5848 | for (ref = expr->ref; ref; ref = ref->next) |
5849 | { |
5850 | if (ar) |
5851 | return false; /* Array shall be last part-ref. */ |
5852 | |
5853 | if (ref->type == REF_COMPONENT) |
5854 | part_ref = ref; |
5855 | else if (ref->type == REF_SUBSTRING) |
5856 | return false; |
5857 | else if (ref->u.ar.type != AR_ELEMENT) |
5858 | ar = &ref->u.ar; |
5859 | } |
5860 | |
5861 | sym = expr->symtree->n.sym; |
5862 | if (expr->ts.type != BT_CLASS |
5863 | && ((part_ref |
5864 | && !part_ref->u.c.component->attr.contiguous |
5865 | && part_ref->u.c.component->attr.pointer) |
5866 | || (!part_ref |
5867 | && !sym->attr.contiguous |
5868 | && (sym->attr.pointer |
5869 | || (sym->as && sym->as->type == AS_ASSUMED_RANK) |
5870 | || (sym->as && sym->as->type == AS_ASSUMED_SHAPE))))) |
5871 | return false; |
5872 | |
5873 | if (!ar || ar->type == AR_FULL) |
5874 | return true; |
5875 | |
5876 | gcc_assert (ar->type == AR_SECTION)((void)(!(ar->type == AR_SECTION) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 5876, __FUNCTION__), 0 : 0)); |
5877 | |
5878 | /* Check for simply contiguous array */ |
5879 | colon = true; |
5880 | for (i = 0; i < ar->dimen; i++) |
5881 | { |
5882 | if (ar->dimen_type[i] == DIMEN_VECTOR) |
5883 | return false; |
5884 | |
5885 | if (ar->dimen_type[i] == DIMEN_ELEMENT) |
5886 | { |
5887 | colon = false; |
5888 | continue; |
5889 | } |
5890 | |
5891 | gcc_assert (ar->dimen_type[i] == DIMEN_RANGE)((void)(!(ar->dimen_type[i] == DIMEN_RANGE) ? fancy_abort ( "/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 5891, __FUNCTION__), 0 : 0)); |
5892 | |
5893 | |
5894 | /* If the previous section was not contiguous, that's an error, |
5895 | unless we have effective only one element and checking is not |
5896 | strict. */ |
5897 | if (!colon && (strict || !ar->start[i] || !ar->end[i] |
5898 | || ar->start[i]->expr_type != EXPR_CONSTANT |
5899 | || ar->end[i]->expr_type != EXPR_CONSTANT |
5900 | || mpz_cmp__gmpz_cmp (ar->start[i]->value.integer, |
5901 | ar->end[i]->value.integer) != 0)) |
5902 | return false; |
5903 | |
5904 | /* Following the standard, "(::1)" or - if known at compile time - |
5905 | "(lbound:ubound)" are not simply contiguous; if strict |
5906 | is false, they are regarded as simply contiguous. */ |
5907 | if (ar->stride[i] && (strict || ar->stride[i]->expr_type != EXPR_CONSTANT |
5908 | || ar->stride[i]->ts.type != BT_INTEGER |
5909 | || mpz_cmp_si (ar->stride[i]->value.integer, 1)(__builtin_constant_p ((1) >= 0) && (1) >= 0 ? ( __builtin_constant_p ((static_cast<unsigned long> (1))) && ((static_cast<unsigned long> (1))) == 0 ? ( (ar->stride[i]->value.integer)->_mp_size < 0 ? -1 : (ar->stride[i]->value.integer)->_mp_size > 0) : __gmpz_cmp_ui (ar->stride[i]->value.integer,(static_cast <unsigned long> (1)))) : __gmpz_cmp_si (ar->stride[i ]->value.integer,1)) != 0)) |
5910 | return false; |
5911 | |
5912 | if (ar->start[i] |
5913 | && (strict || ar->start[i]->expr_type != EXPR_CONSTANT |
5914 | || !ar->as->lower[i] |
5915 | || ar->as->lower[i]->expr_type != EXPR_CONSTANT |
5916 | || mpz_cmp__gmpz_cmp (ar->start[i]->value.integer, |
5917 | ar->as->lower[i]->value.integer) != 0)) |
5918 | colon = false; |
5919 | |
5920 | if (ar->end[i] |
5921 | && (strict || ar->end[i]->expr_type != EXPR_CONSTANT |
5922 | || !ar->as->upper[i] |
5923 | || ar->as->upper[i]->expr_type != EXPR_CONSTANT |
5924 | || mpz_cmp__gmpz_cmp (ar->end[i]->value.integer, |
5925 | ar->as->upper[i]->value.integer) != 0)) |
5926 | colon = false; |
5927 | } |
5928 | |
5929 | return true; |
5930 | } |
5931 | |
5932 | /* Return true if the expression is guaranteed to be non-contiguous, |
5933 | false if we cannot prove anything. It is probably best to call |
5934 | this after gfc_is_simply_contiguous. If neither of them returns |
5935 | true, we cannot say (at compile-time). */ |
5936 | |
5937 | bool |
5938 | gfc_is_not_contiguous (gfc_expr *array) |
5939 | { |
5940 | int i; |
5941 | gfc_array_ref *ar = NULL__null; |
5942 | gfc_ref *ref; |
5943 | bool previous_incomplete; |
5944 | |
5945 | for (ref = array->ref; ref; ref = ref->next) |
5946 | { |
5947 | /* Array-ref shall be last ref. */ |
5948 | |
5949 | if (ar && ar->type != AR_ELEMENT) |
5950 | return true; |
5951 | |
5952 | if (ref->type == REF_ARRAY) |
5953 | ar = &ref->u.ar; |
5954 | } |
5955 | |
5956 | if (ar == NULL__null || ar->type != AR_SECTION) |
5957 | return false; |
5958 | |
5959 | previous_incomplete = false; |
5960 | |
5961 | /* Check if we can prove that the array is not contiguous. */ |
5962 | |
5963 | for (i = 0; i < ar->dimen; i++) |
5964 | { |
5965 | mpz_t arr_size, ref_size; |
5966 | |
5967 | if (gfc_ref_dimen_size (ar, i, &ref_size, NULL__null)) |
5968 | { |
5969 | if (gfc_dep_difference (ar->as->upper[i], ar->as->lower[i], &arr_size)) |
5970 | { |
5971 | /* a(2:4,2:) is known to be non-contiguous, but |
5972 | a(2:4,i:i) can be contiguous. */ |
5973 | mpz_add_ui__gmpz_add_ui (arr_size, arr_size, 1L); |
5974 | if (previous_incomplete && mpz_cmp_si (ref_size, 1)(__builtin_constant_p ((1) >= 0) && (1) >= 0 ? ( __builtin_constant_p ((static_cast<unsigned long> (1))) && ((static_cast<unsigned long> (1))) == 0 ? ( (ref_size)->_mp_size < 0 ? -1 : (ref_size)->_mp_size > 0) : __gmpz_cmp_ui (ref_size,(static_cast<unsigned long > (1)))) : __gmpz_cmp_si (ref_size,1)) != 0) |
5975 | { |
5976 | mpz_clear__gmpz_clear (arr_size); |
5977 | mpz_clear__gmpz_clear (ref_size); |
5978 | return true; |
5979 | } |
5980 | else if (mpz_cmp__gmpz_cmp (arr_size, ref_size) != 0) |
5981 | previous_incomplete = true; |
5982 | |
5983 | mpz_clear__gmpz_clear (arr_size); |
5984 | } |
5985 | |
5986 | /* Check for a(::2), i.e. where the stride is not unity. |
5987 | This is only done if there is more than one element in |
5988 | the reference along this dimension. */ |
5989 | |
5990 | if (mpz_cmp_ui (ref_size, 1)(__builtin_constant_p (1) && (1) == 0 ? ((ref_size)-> _mp_size < 0 ? -1 : (ref_size)->_mp_size > 0) : __gmpz_cmp_ui (ref_size,1)) > 0 && ar->type == AR_SECTION |
5991 | && ar->dimen_type[i] == DIMEN_RANGE |
5992 | && ar->stride[i] && ar->stride[i]->expr_type == EXPR_CONSTANT |
5993 | && mpz_cmp_si (ar->stride[i]->value.integer, 1)(__builtin_constant_p ((1) >= 0) && (1) >= 0 ? ( __builtin_constant_p ((static_cast<unsigned long> (1))) && ((static_cast<unsigned long> (1))) == 0 ? ( (ar->stride[i]->value.integer)->_mp_size < 0 ? -1 : (ar->stride[i]->value.integer)->_mp_size > 0) : __gmpz_cmp_ui (ar->stride[i]->value.integer,(static_cast <unsigned long> (1)))) : __gmpz_cmp_si (ar->stride[i ]->value.integer,1)) != 0) |
5994 | { |
5995 | mpz_clear__gmpz_clear (ref_size); |
5996 | return true; |
5997 | } |
5998 | |
5999 | mpz_clear__gmpz_clear (ref_size); |
6000 | } |
6001 | } |
6002 | /* We didn't find anything definitive. */ |
6003 | return false; |
6004 | } |
6005 | |
6006 | /* Build call to an intrinsic procedure. The number of arguments has to be |
6007 | passed (rather than ending the list with a NULL value) because we may |
6008 | want to add arguments but with a NULL-expression. */ |
6009 | |
6010 | gfc_expr* |
6011 | gfc_build_intrinsic_call (gfc_namespace *ns, gfc_isym_id id, const char* name, |
6012 | locus where, unsigned numarg, ...) |
6013 | { |
6014 | gfc_expr* result; |
6015 | gfc_actual_arglist* atail; |
6016 | gfc_intrinsic_sym* isym; |
6017 | va_list ap; |
6018 | unsigned i; |
6019 | const char *mangled_name = gfc_get_string (GFC_PREFIX ("%s")"_F." "%s", name); |
6020 | |
6021 | isym = gfc_intrinsic_function_by_id (id); |
6022 | gcc_assert (isym)((void)(!(isym) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 6022, __FUNCTION__), 0 : 0)); |
6023 | |
6024 | result = gfc_get_expr (); |
6025 | result->expr_type = EXPR_FUNCTION; |
6026 | result->ts = isym->ts; |
6027 | result->where = where; |
6028 | result->value.function.name = mangled_name; |
6029 | result->value.function.isym = isym; |
6030 | |
6031 | gfc_get_sym_tree (mangled_name, ns, &result->symtree, false); |
6032 | gfc_commit_symbol (result->symtree->n.sym); |
6033 | gcc_assert (result->symtree((void)(!(result->symtree && (result->symtree-> n.sym->attr.flavor == FL_PROCEDURE || result->symtree-> n.sym->attr.flavor == FL_UNKNOWN)) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 6035, __FUNCTION__), 0 : 0)) |
6034 | && (result->symtree->n.sym->attr.flavor == FL_PROCEDURE((void)(!(result->symtree && (result->symtree-> n.sym->attr.flavor == FL_PROCEDURE || result->symtree-> n.sym->attr.flavor == FL_UNKNOWN)) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 6035, __FUNCTION__), 0 : 0)) |
6035 | || result->symtree->n.sym->attr.flavor == FL_UNKNOWN))((void)(!(result->symtree && (result->symtree-> n.sym->attr.flavor == FL_PROCEDURE || result->symtree-> n.sym->attr.flavor == FL_UNKNOWN)) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 6035, __FUNCTION__), 0 : 0)); |
6036 | result->symtree->n.sym->intmod_sym_id = id; |
6037 | result->symtree->n.sym->attr.flavor = FL_PROCEDURE; |
6038 | result->symtree->n.sym->attr.intrinsic = 1; |
6039 | result->symtree->n.sym->attr.artificial = 1; |
6040 | |
6041 | va_start (ap, numarg)__builtin_va_start(ap, numarg); |
6042 | atail = NULL__null; |
6043 | for (i = 0; i < numarg; ++i) |
6044 | { |
6045 | if (atail) |
6046 | { |
6047 | atail->next = gfc_get_actual_arglist ()((gfc_actual_arglist *) xcalloc (1, sizeof (gfc_actual_arglist ))); |
6048 | atail = atail->next; |
6049 | } |
6050 | else |
6051 | atail = result->value.function.actual = gfc_get_actual_arglist ()((gfc_actual_arglist *) xcalloc (1, sizeof (gfc_actual_arglist ))); |
6052 | |
6053 | atail->expr = va_arg (ap, gfc_expr*)__builtin_va_arg(ap, gfc_expr*); |
6054 | } |
6055 | va_end (ap)__builtin_va_end(ap); |
6056 | |
6057 | return result; |
6058 | } |
6059 | |
6060 | |
6061 | /* Check if an expression may appear in a variable definition context |
6062 | (F2008, 16.6.7) or pointer association context (F2008, 16.6.8). |
6063 | This is called from the various places when resolving |
6064 | the pieces that make up such a context. |
6065 | If own_scope is true (applies to, e.g., ac-implied-do/data-implied-do |
6066 | variables), some checks are not performed. |
6067 | |
6068 | Optionally, a possible error message can be suppressed if context is NULL |
6069 | and just the return status (true / false) be requested. */ |
6070 | |
6071 | bool |
6072 | gfc_check_vardef_context (gfc_expr* e, bool pointer, bool alloc_obj, |
6073 | bool own_scope, const char* context) |
6074 | { |
6075 | gfc_symbol* sym = NULL__null; |
6076 | bool is_pointer; |
6077 | bool check_intentin; |
6078 | bool ptr_component; |
6079 | symbol_attribute attr; |
6080 | gfc_ref* ref; |
6081 | int i; |
6082 | |
6083 | if (e->expr_type == EXPR_VARIABLE) |
6084 | { |
6085 | gcc_assert (e->symtree)((void)(!(e->symtree) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 6085, __FUNCTION__), 0 : 0)); |
6086 | sym = e->symtree->n.sym; |
6087 | } |
6088 | else if (e->expr_type == EXPR_FUNCTION) |
6089 | { |
6090 | gcc_assert (e->symtree)((void)(!(e->symtree) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 6090, __FUNCTION__), 0 : 0)); |
6091 | sym = e->value.function.esym ? e->value.function.esym : e->symtree->n.sym; |
6092 | } |
6093 | |
6094 | attr = gfc_expr_attr (e); |
6095 | if (!pointer && e->expr_type == EXPR_FUNCTION && attr.pointer) |
6096 | { |
6097 | if (!(gfc_option.allow_std & GFC_STD_F2008(1<<7))) |
6098 | { |
6099 | if (context) |
6100 | gfc_error ("Fortran 2008: Pointer functions in variable definition" |
6101 | " context (%s) at %L", context, &e->where); |
6102 | return false; |
6103 | } |
6104 | } |
6105 | else if (e->expr_type != EXPR_VARIABLE) |
6106 | { |
6107 | if (context) |
6108 | gfc_error ("Non-variable expression in variable definition context (%s)" |
6109 | " at %L", context, &e->where); |
6110 | return false; |
6111 | } |
6112 | |
6113 | if (!pointer && sym->attr.flavor == FL_PARAMETER) |
6114 | { |
6115 | if (context) |
6116 | gfc_error ("Named constant %qs in variable definition context (%s)" |
6117 | " at %L", sym->name, context, &e->where); |
6118 | return false; |
6119 | } |
6120 | if (!pointer && sym->attr.flavor != FL_VARIABLE |
6121 | && !(sym->attr.flavor == FL_PROCEDURE && sym == sym->result) |
6122 | && !(sym->attr.flavor == FL_PROCEDURE && sym->attr.proc_pointer)) |
6123 | { |
6124 | if (context) |
6125 | gfc_error ("%qs in variable definition context (%s) at %L is not" |
6126 | " a variable", sym->name, context, &e->where); |
6127 | return false; |
6128 | } |
6129 | |
6130 | /* Find out whether the expr is a pointer; this also means following |
6131 | component references to the last one. */ |
6132 | is_pointer = (attr.pointer || attr.proc_pointer); |
6133 | if (pointer && !is_pointer) |
6134 | { |
6135 | if (context) |
6136 | gfc_error ("Non-POINTER in pointer association context (%s)" |
6137 | " at %L", context, &e->where); |
6138 | return false; |
6139 | } |
6140 | |
6141 | if (e->ts.type == BT_DERIVED |
6142 | && e->ts.u.derived == NULL__null) |
6143 | { |
6144 | if (context) |
6145 | gfc_error ("Type inaccessible in variable definition context (%s) " |
6146 | "at %L", context, &e->where); |
6147 | return false; |
6148 | } |
6149 | |
6150 | /* F2008, C1303. */ |
6151 | if (!alloc_obj |
6152 | && (attr.lock_comp |
6153 | || (e->ts.type == BT_DERIVED |
6154 | && e->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV |
6155 | && e->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE))) |
6156 | { |
6157 | if (context) |
6158 | gfc_error ("LOCK_TYPE in variable definition context (%s) at %L", |
6159 | context, &e->where); |
6160 | return false; |
6161 | } |
6162 | |
6163 | /* TS18508, C702/C203. */ |
6164 | if (!alloc_obj |
6165 | && (attr.lock_comp |
6166 | || (e->ts.type == BT_DERIVED |
6167 | && e->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV |
6168 | && e->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE))) |
6169 | { |
6170 | if (context) |
6171 | gfc_error ("LOCK_EVENT in variable definition context (%s) at %L", |
6172 | context, &e->where); |
6173 | return false; |
6174 | } |
6175 | |
6176 | /* INTENT(IN) dummy argument. Check this, unless the object itself is the |
6177 | component of sub-component of a pointer; we need to distinguish |
6178 | assignment to a pointer component from pointer-assignment to a pointer |
6179 | component. Note that (normal) assignment to procedure pointers is not |
6180 | possible. */ |
6181 | check_intentin = !own_scope; |
6182 | ptr_component = (sym->ts.type == BT_CLASS && sym->ts.u.derived |
6183 | && CLASS_DATA (sym)sym->ts.u.derived->components) |
6184 | ? CLASS_DATA (sym)sym->ts.u.derived->components->attr.class_pointer : sym->attr.pointer; |
6185 | for (ref = e->ref; ref && check_intentin; ref = ref->next) |
6186 | { |
6187 | if (ptr_component && ref->type == REF_COMPONENT) |
6188 | check_intentin = false; |
6189 | if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer) |
6190 | { |
6191 | ptr_component = true; |
6192 | if (!pointer) |
6193 | check_intentin = false; |
6194 | } |
6195 | } |
6196 | |
6197 | if (check_intentin |
6198 | && (sym->attr.intent == INTENT_IN |
6199 | || (sym->attr.select_type_temporary && sym->assoc |
6200 | && sym->assoc->target && sym->assoc->target->symtree |
6201 | && sym->assoc->target->symtree->n.sym->attr.intent == INTENT_IN))) |
6202 | { |
6203 | if (pointer && is_pointer) |
6204 | { |
6205 | if (context) |
6206 | gfc_error ("Dummy argument %qs with INTENT(IN) in pointer" |
6207 | " association context (%s) at %L", |
6208 | sym->name, context, &e->where); |
6209 | return false; |
6210 | } |
6211 | if (!pointer && !is_pointer && !sym->attr.pointer) |
6212 | { |
6213 | const char *name = sym->attr.select_type_temporary |
6214 | ? sym->assoc->target->symtree->name : sym->name; |
6215 | if (context) |
6216 | gfc_error ("Dummy argument %qs with INTENT(IN) in variable" |
6217 | " definition context (%s) at %L", |
6218 | name, context, &e->where); |
6219 | return false; |
6220 | } |
6221 | } |
6222 | |
6223 | /* PROTECTED and use-associated. */ |
6224 | if (sym->attr.is_protected && sym->attr.use_assoc && check_intentin) |
6225 | { |
6226 | if (pointer && is_pointer) |
6227 | { |
6228 | if (context) |
6229 | gfc_error ("Variable %qs is PROTECTED and cannot appear in a" |
6230 | " pointer association context (%s) at %L", |
6231 | sym->name, context, &e->where); |
6232 | return false; |
6233 | } |
6234 | if (!pointer && !is_pointer) |
6235 | { |
6236 | if (context) |
6237 | gfc_error ("Variable %qs is PROTECTED and cannot appear in a" |
6238 | " variable definition context (%s) at %L", |
6239 | sym->name, context, &e->where); |
6240 | return false; |
6241 | } |
6242 | } |
6243 | |
6244 | /* Variable not assignable from a PURE procedure but appears in |
6245 | variable definition context. */ |
6246 | if (!pointer && !own_scope && gfc_pure (NULL__null) && gfc_impure_variable (sym)) |
6247 | { |
6248 | if (context) |
6249 | gfc_error ("Variable %qs cannot appear in a variable definition" |
6250 | " context (%s) at %L in PURE procedure", |
6251 | sym->name, context, &e->where); |
6252 | return false; |
6253 | } |
6254 | |
6255 | if (!pointer && context && gfc_implicit_pure (NULL__null) |
6256 | && gfc_impure_variable (sym)) |
6257 | { |
6258 | gfc_namespace *ns; |
6259 | gfc_symbol *sym; |
6260 | |
6261 | for (ns = gfc_current_ns; ns; ns = ns->parent) |
6262 | { |
6263 | sym = ns->proc_name; |
6264 | if (sym == NULL__null) |
6265 | break; |
6266 | if (sym->attr.flavor == FL_PROCEDURE) |
6267 | { |
6268 | sym->attr.implicit_pure = 0; |
6269 | break; |
6270 | } |
6271 | } |
6272 | } |
6273 | /* Check variable definition context for associate-names. */ |
6274 | if (!pointer && sym->assoc && !sym->attr.select_rank_temporary) |
6275 | { |
6276 | const char* name; |
6277 | gfc_association_list* assoc; |
6278 | |
6279 | gcc_assert (sym->assoc->target)((void)(!(sym->assoc->target) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 6279, __FUNCTION__), 0 : 0)); |
6280 | |
6281 | /* If this is a SELECT TYPE temporary (the association is used internally |
6282 | for SELECT TYPE), silently go over to the target. */ |
6283 | if (sym->attr.select_type_temporary) |
6284 | { |
6285 | gfc_expr* t = sym->assoc->target; |
6286 | |
6287 | gcc_assert (t->expr_type == EXPR_VARIABLE)((void)(!(t->expr_type == EXPR_VARIABLE) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 6287, __FUNCTION__), 0 : 0)); |
6288 | name = t->symtree->name; |
6289 | |
6290 | if (t->symtree->n.sym->assoc) |
6291 | assoc = t->symtree->n.sym->assoc; |
6292 | else |
6293 | assoc = sym->assoc; |
6294 | } |
6295 | else |
6296 | { |
6297 | name = sym->name; |
6298 | assoc = sym->assoc; |
6299 | } |
6300 | gcc_assert (name && assoc)((void)(!(name && assoc) ? fancy_abort ("/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/expr.c" , 6300, __FUNCTION__), 0 : 0)); |
6301 | |
6302 | /* Is association to a valid variable? */ |
6303 | if (!assoc->variable) |
6304 | { |
6305 | if (context) |
6306 | { |
6307 | if (assoc->target->expr_type == EXPR_VARIABLE) |
6308 | gfc_error ("%qs at %L associated to vector-indexed target" |
6309 | " cannot be used in a variable definition" |
6310 | " context (%s)", |
6311 | name, &e->where, context); |
6312 | else |
6313 | gfc_error ("%qs at %L associated to expression" |
6314 | " cannot be used in a variable definition" |
6315 | " context (%s)", |
6316 | name, &e->where, context); |
6317 | } |
6318 | return false; |
6319 | } |
6320 | |
6321 | /* Target must be allowed to appear in a variable definition context. */ |
6322 | if (!gfc_check_vardef_context (assoc->target, pointer, false, false, NULL__null)) |
6323 | { |
6324 | if (context) |
6325 | gfc_error ("Associate-name %qs cannot appear in a variable" |
6326 | " definition context (%s) at %L because its target" |
6327 | " at %L cannot, either", |
6328 | name, context, &e->where, |
6329 | &assoc->target->where); |
6330 | return false; |
6331 | } |
6332 | } |
6333 | |
6334 | /* Check for same value in vector expression subscript. */ |
6335 | |
6336 | if (e->rank > 0) |
6337 | for (ref = e->ref; ref != NULL__null; ref = ref->next) |
6338 | if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION) |
6339 | for (i = 0; i < GFC_MAX_DIMENSIONS15 |
6340 | && ref->u.ar.dimen_type[i] != 0; i++) |
6341 | if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR) |
6342 | { |
6343 | gfc_expr *arr = ref->u.ar.start[i]; |
6344 | if (arr->expr_type == EXPR_ARRAY) |
6345 | { |
6346 | gfc_constructor *c, *n; |
6347 | gfc_expr *ec, *en; |
6348 | |
6349 | for (c = gfc_constructor_first (arr->value.constructor); |
6350 | c != NULL__null; c = gfc_constructor_next (c)) |
6351 | { |
6352 | if (c == NULL__null || c->iterator != NULL__null) |
6353 | continue; |
6354 | |
6355 | ec = c->expr; |
6356 | |
6357 | for (n = gfc_constructor_next (c); n != NULL__null; |
6358 | n = gfc_constructor_next (n)) |
6359 | { |
6360 | if (n->iterator != NULL__null) |
6361 | continue; |
6362 | |
6363 | en = n->expr; |
6364 | if (gfc_dep_compare_expr (ec, en) == 0) |
6365 | { |
6366 | if (context) |
6367 | gfc_error_now ("Elements with the same value " |
6368 | "at %L and %L in vector " |
6369 | "subscript in a variable " |
6370 | "definition context (%s)", |
6371 | &(ec->where), &(en->where), |
6372 | context); |
6373 | return false; |
6374 | } |
6375 | } |
6376 | } |
6377 | } |
6378 | } |
6379 | |
6380 | return true; |
6381 | } |